ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-13
    Description: Simulation models have a broad potential as decision-support tools for resource management by mechanistically representing and projecting complex ecological processes. In the case of socioeconomically and biologically important coral reef ecosystems, models have been used to address important questions regarding the effects of human impacts on their ecological dynamics and to inform management approaches. However, few of the models integrate benthic and fish dynamics with the influence of external anthropogenic stressors, and virtually none is available as a user-friendly platform for non-scientist managers to easily access. We propose a new ecological model to assess the effects of simultaneous stressors on coral reef ecosystems which includes a dynamic representation of benthic and fish spatial processes, linked by their ecological feedbacks. SEAMANCORE is a two-dimensional model representing the dynamics of local coral reefs which can be used to explore the influence of bleaching, eutrophication, and fishing, including destructive fishing such as bomb and cyanide fishing. The model is coupled with a menu-based interface that allows users with no programming experience to simulate numerous scenarios in specific contexts that can be customized with depth profile maps and initial coral reef conditions of fish and benthos functional group abundance. This study includes SEAMANCORE’s description and shows the model’s sensitivity to its parameters by means of sensitivity analyses. Its utility is exemplified by exploring various scenarios of no stressors, fishing and bleaching regimes in a theoretical coral reef. We expect that linking fish demographics with changing habitat quality will prove insightful for fisheries management.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 216 (1967), S. 575-576 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Table 1. ANALYSIS OF STEEL IN WEIGHT PER CENT N C Si Mn Cr Ni Mo S P B Co V As 0-02 0-02 0-57 1-56 16-7 13-06 2-43 0-015 0-017 0-0004 0-02 0-02 0-02 A. common feature of all specimens examined after irradiation to total neutron doses greater than 1022 n.cm2 in the temperature range 400-610 C was ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Optical surveys of the global star-formation rate in high-redshift galaxies show a strong peak in activity at a redshift of 〉z ≈ 1.5, which implies that most of the star formation has already been seen. High-redshift galaxies may, however, emit most of their energy at ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-06
    Description: Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds.Wec onsider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region—the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 411-484, ISBN: 9781107641655
    Publication Date: 2017-01-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Plant, Cell & Environment 37 (2014): 899-910, doi:10.1111/pce.12206.
    Description: The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.
    Description: This work was supported by a NOAA Climate and Global Change Postdoctoral Fellowship to RBN, administered by the University Corporation for Atmospheric Research, by a grant from the Andrew W. Mellon Foundation to NMH, and by DOE Terrestrial Ecosystem Science grant ER65389 to ZGC and RBN.
    Description: 2014-10-24
    Keywords: Hydraulic redistribution ; Hydraulic lift ; Helianthus annuus ; Sunflower ; Nighttime transpiration ; Soil texture
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-24
    Description: The changing geographical distribution of species, or range shift, is one of the better documented fingerprints of climate change in the marine environment. Range shifts may also lead to dramatic changes in the distribution of economic, social, and cultural opportunities. These challenge marine resource users' capacity to adapt to a changing climate and managers' ability to implement adaptation plans. In particular, a reluctance to attribute marine range shift to climate change can undermine the effectiveness of climate change communications and pose a potential barrier to successful adaptation. Attribution is a known powerful predictor of behavioural intention. Understanding the cognitive processes that underpin the formation of marine resource users' beliefs about the cause of observed marine range shift phenomena is therefore an important topic for research. An examination of the attribution by marine resource users of three types of range shifts experienced in a marine climate change hotspot in southeast Australia to various climate and non-climate drivers indicates the existence of at least three contributing cognitions. These are: (i) engrained mental representations of environmental phenomena, (ii) scientific complexity in the attribution pathway, and (iii) dissonance from the positive or negative nature of the impact. All three play a part in explaining the complex pattern of attribution of marine climate change range shifts, and should be considered when planning for engagement with stakeholders and managers around adaptation to climate change.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-13
    Description: A recent publication about balanced harvesting (Froese et al ., ICES Journal of Marine Science ; 73: 1640–1650) contains several erroneous statements about size-spectrum models. We refute the statements by showing that the assumptions pertaining to size-spectrum models discussed by Froese et al. are realistic and consistent. We further show that the assumption about density-dependence being described by a stock recruitment relationship is responsible for determining whether a peak in the cohort biomass of a population occurs late or early in life. Finally, we argue that there is indeed a constructive role for a wide suite of ecosystem models to evaluate fishing strategies in an ecosystem context.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2015-06-06
    Description: Invertebrate catches are increasing globally following the depletion of many finfish stocks, yet stock assessments and management plans for invertebrates are limited, as is an understanding of the ecosystem effects of these fisheries. Using an ecosystem modelling approach, we explored the trade-offs between invertebrate catches and their impacts on the associated ecosystem on the south coast of Wellington, New Zealand. We simulated exploitation of lobster ( Jasus edwardsii ), abalone ( Haliotis australis , H. iris ), and sea urchin ( Evechinus chloroticus ) over a range of depletion levels—from no depletion to local extinction—to estimate changes in target catches and associated effects on other species groups, trophic levels, and benthic and pelagic components. Exploitation of lobster showed the strongest ecosystem effects, followed by abalone and urchin. In all three fisheries, the current exploitation rate exceeds that which produces maximum sustainable yield, with considerable ecosystem effects. Interestingly, a reduced exploitation rate is predicted to increase target catches (and catch-per-unit-effort), thereby strongly reducing ecosystem effects, a win–win situation. Our results suggest that invertebrate exploitation clearly influences ecosystem structure and function, yet the direction and magnitude of responses depend on the target group and exploitation rate. An ecosystem-based fisheries management approach that includes the role of invertebrates would improve the conservation and management of invertebrate resources and marine ecosystems on broader scales.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...