ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-01
    Print ISSN: 1540-7489
    Electronic ISSN: 1873-2704
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-01
    Description: The traditional archaeological chronology in the Japanese Islands during the Jomon period was essentially based on the relative age given to cord-impressed patterns marked on pottery, as well as the shape of the pottery and the thickness of the cultural layers that were excavated. We aimed to correlate the classical archaeological chronology with calibrated radiocarbon dates, to posit a new chronology for the Jomon period in northeastern Japan. We calibrated 80 accelerator mass spectrometry (AMS) 14C dates from NE Japan and reconstructed a chronological timetable for Hokkaido and the Tohoku District. We collected 43 samples from 5 shellmounds and 2 archaeological sites on Hokkaido Island and 4 shellmounds in the Tohoku District in order to determine the calibrated age of their sites. ΔR values used on Hokkaido Island and the Tohoku District were between 282 and –158 yr and between ±0 and –40 yr, respectively. The large ΔR value for the eastern part of Hokkaido Island indicates the influence of the Oyashio Current, while an anomalous ΔR value was obtained from northern Hokkaido Island. These figures show larger apparent ΔR values than those from southwest Japan (Nakamura et al. 2007). The calibrated Jomon period in the investigated area was from 2000 to 200 yr younger than the previous chronology. Calibrated 14C ages of the shellmounds investigated ranged between ∼6000 and 3000 yr, correlating to the Early Jomon and Final Jomon periods as indicated by the former archaeological chronology of Honshu Island.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-22
    Description: Low-temperature active-screen plasma nitriding (ASPN) was applied in this study to improve the bending rigidity and corrosion resistance of a small-diameter thin pipe composed of austenitic stainless steel (SUS 304). The inner and outer diameters of the pipe were ϕ0.3 and ϕ0.4 mm, respectively, and the pipe length was 50 mm. The jig temperature was measured using a thermocouple and was adopted as the nitriding temperature because measuring the temperature of a small-diameter pipe is difficult. The nitriding temperature was varied from 578 to 638 K to investigate the effect of temperature on the nitriding layer and mechanical property. The nitriding layer thickness increased with an increase in nitriding temperature, reaching 15 μm at 638 K. The existence of expanded austenite (S phase) in this nitriding layer was revealed using the X-ray diffraction pattern. Moreover, the surface hardness increased with the nitriding temperature and took a maximum value of 1100 HV above 598 K. The bending load increased with an increase in the nitriding temperature in relation to the thicker nitriding layer and increased surface hardness. The nitrided samples did not corrode near the center, and corrosion was noted only near the tip at high nitriding temperatures of 618 and 638 K in a salt spray test. These results indicated that the bending rigidity of the small-diameter thin pipe composed of austenitic stainless steel was successfully improved using low-temperature ASPN while ensuring corrosion resistance.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...