ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-07
    Description: Marine wide-angle seismic data obtained using air guns and ocean-bottom seismographs (OBSs) are effective for determining large-scale subseafloor seismic velocities, but they are ineffective for imaging details of shallow seismic reflection structures because of poor illumination. Surface-related multiple reflections offer the potential to enlarge the OBS data illumination area. We have developed a new seismic imaging method for OBS surveys applying seismic interferometry, a technique that uses surface-related multiples similarly to mirror imaging. Seismic interferometry can use higher order multiple reflections than mirror imaging, which mainly uses first-order multiple reflections. A salient advantage of interferometric OBS imaging over mirror imaging is that it requires only single-component data, whereas mirror imaging requires vertical geophone and hydrophone components to separate upgoing and downgoing wavefields. We applied interferometric OBS imaging to actual 175 km long wide-angle OBS data acquired in the Nankai Trough subduction zone. We obtained clear continuous reflection images in the deep and shallow parts including the seafloor from the OBS data acquired with large spacing. Deconvolution interferometry is more suitable than correlation interferometry to improve spatial resolution because of the effects of spectral division when applied to common receiver gathers. We examined the imaging result dependence on data acquisition and processing parameters considering the data quality and target depth. An air-gun-to-OBS distance of up to 50 km and a record length of 80 s were necessary for better imaging. In addition, our decimation tests confirmed that denser OBS spacing yielded better quality and higher resolution images. Understanding crosstalk effects due to the acquisition setting will be useful to optimize methods for eliminating them. Interferometric OBS imaging merged with conventional primary reflection imaging is a powerful method for revealing crustal structures.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-10
    Description: Seismic reflection and refraction data from Hikurangi Plateau (southwestern Pacific Ocean) require a crustal thickness of 10 ± 1 km, seismic velocity of 7.25 ± 0.35 km/s at the base of the crust, and mantle velocity of 8.30 ± 0.25 km/s just beneath the Moho. Published models of gravity data that assume normal crust and mantle density predict 5–10-km-thicker crust than we observe, suggesting that the mantle beneath Hikurangi Plateau has anomalously low density, which is inconsistent with previous suggestions of eclogite to explain observations of high seismic velocity. The combination of high seismic velocity and low density requires the mantle to be highly depleted and not serpentinized. We propose that Hikurangi Plateau formed by decompression melting of buoyant mantle that was removed from a craton root by subduction, held beneath 660 km by viscous coupling to slabs, and then rose as a plume from the lower mantle. Ancient Re-Os ages from mantle xenoliths in nearby South Island, New Zealand, support this hypothesis. Erosion of buoyant depleted mantle from craton roots by subduction and then recycling in plumes to make new lithosphere may be an important global geochemical process.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Subduction of the oceanic plate plays an important role in the various processes in subduction zones, including arc magmatism and generation of earthquakes. Thus the nature of the incoming plate, such as its relief, thermal state, lithology, and the water content, are considered to shape these subduction zone processes. In 2014 and 2015, to reveal the nature of the incoming plate in the ocean-ward area of the 2011 M9 Tohoku earthquake, we conducted wide-angle seismic surveys in the trench-outer rise region of the Japan Trench. We designed a 600 km long seismic survey line perpendicular to the trench axis and deployed 88 OBSs at intervals of 6 km and shot a tuned airgun array of R/V Kairei. We have applied a traveltime inversion to model the P-wave velocity (Vp) structure. The resulting Vp model shows that Vp within the oceanic crust and the topmost mantle decreases in the vicinity of the trench axis probably due to the plate bending. In addition, we observed low Vp at the top of the oceanic crust in the area of petit spot volcanos. The low Vp area may be related to magma intrusions because we observed several structural interfaces in the shallow area. We found two structural features that we did not anticipate. First, crustal thickness abruptly changes at around the center of our survey line (~300-km east from the trench axis); crust thickness is 7-km in the west and 6-km in the east. Second, mantle Vp shows significant variations along the survey line, ~7.5 km/s in the bend-fault area (western area), 8.0 km/s around the center, 8.5 km/s in the eastern area. Based on the shear wave splitting observed in our data set, we infer that high mantle Vp in the eastern area is related with the changes in the orientation of the mantle anisotropy. Since we do not see any remarkable topographic features indicating the off-ridge activities, we consider that these observed structural features are related with the activities near the ancient spreading ridge when the oceanic plate formed, indicating that the oceanic plate in the NW Pacific margin, the input to the northeastern Japanese island arc, is more complicated here than we previously thought. In this presentation, we will show an overview of the Vp model along the whole profile and detailed seismic structure beneath the petit-spot area derived by the P-to-S converted waves.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...