ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bertler, Nancy A; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Urban; Winstrup, Mai; Vallelonga, Paul T; Lee, James E; Brook, Edward J; Severinghaus, Jeffrey P; Fudge, Tyler J; Keller, Elizabeth D; Baisden, W Troy; Hindmarsh, Richard C A; Neff, Peter D; Blunier, Thomas; Edwards, Ross L; Mayewski, Paul Andrew; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle Astrid; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G; Delmonte, Barbara; Eling, Lukas; Ellis, Aja A; Ganesh, Shruthi; Golledge, Nicholas R; Haines, Skylar A; Handley, Michael; Hawley, Robert L; Hogan, Chad M; Johnson, Katelyn M; Korotkikh, Elena; Lowry, Daniel P; Mandeno, Darcy; McKay, Robert M; Menking, James A; Naish, Timothy R; Noerling, Caroline; Ollive, Agathe; Orsi, Anais J; Proemse, Bernadette C; Pyne, Alexander R; Pyne, Rebecca L; Renwick, James; Scherer, Reed P; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B; Steig, Eric J; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A; Winton, Victoria H L; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin (2018): The Ross Sea dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past, 14, 193-214, https://doi.org/10.5194/cp-14-193-2018
    Publication Date: 2024-03-18
    Description: High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979-2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings.
    Keywords: AGE; Age, maximum/old; Age, minimum/young; DEPTH, ice/snow; ICEDRILL; Ice drill; Isotope ratio mass spectrometry; RICE; Roosevelt Island, Antarctica; δ Deuterium
    Type: Dataset
    Format: text/tab-separated-values, 8136 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steig, Eric J; Ding, Quinghua; White, James W C; Küttel, Meinrad; Rupper, Summer B; Neumann, T A; Neff, Peter D; Gallant, Ailie J E; Mayewski, Paul Andrew; Taylor, Kendrick C; Hoffmann, Georg; Dixon, Daniel A; Schoenemann, Spruce W; Markle, Bradley R; Fudge, Tyler J; Schneider, David P; Schauer, Andrew J; Teel, Rebecca P; Vaughn, Bruce H; Burgener, Landon; Williams, Jessica; Korotkikh, Elena (2013): Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6(5), 372-375, https://doi.org/10.1038/NGEO1778
    Publication Date: 2024-03-18
    Description: Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below. Atmospheric circulation changes have also caused rapid warming over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen-Bellingshausen seas. It is unknown whether these changes are part of a longer-term trend. Here, we use water-isotope (d18O) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the d18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, d18O anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in d18O and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.
    Keywords: Antarctica, west; DEPTH, ice/snow; ICEDRILL; Ice drill; WAIS_divide; δ18O, water
    Type: Dataset
    Format: text/tab-separated-values, 601 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-05
    Description: The West Antarctic Ice Sheet (WAIS) Divide deep ice core WD2014 chronology, consisting of ice age, gas age, delta-age and uncertainties therein. The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP; Sigl et al., 2015, Sigl et al., 2016) have been dated using annual-layer counting based on counting of annual layers observed in the chemical, dust and electrical conductivity records. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing of the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13. We demonstrated that over the Holocene WD2014 was consistently accurate to better than 0.5% of the age. The chronology for the deep part of the core (below 2850m; 67.8-31.2 ka BP; Buizert et al., 2015) is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. We synchronized the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record.
    Keywords: Age, difference; Age, difference error; Age, error; annual-layer-counting; Antarctica; Antarctica, west; Calendar age; Calendar age, standard error; chronology; DEPTH, ice/snow; Gas age; Greenland; ice-core; ICEDRILL; Ice drill; Methane; WAIS; WAIS Divide; WDC-06A; West Antarctic Ice Sheet Divide ice core project
    Type: Dataset
    Format: text/tab-separated-values, 392326 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-07
    Description: The South Pole Ice Core (SPICEcore), which spans the past 54 300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ∼20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (∼20 %) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of −0.008 ‰ m−1 for δ18O. Advection adds approximately 1 ‰ for δ18O to the Last Glacial Maximum (LGM)-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice-sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10 ∘C km−1 of elevation, the inference of LGM-to-modern temperature change is ∼1.4 ∘C smaller than if the flow from upstream is not considered.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-28
    Description: Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatially variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-02
    Description: In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gas and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-10
    Description: Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-30
    Description: To understand causal relationships in past climate variations, it is essential to have accurate chronologies of paleoclimate records. The last deglaciation, which occurred from 18 000 to 11 000 years ago, is especially interesting, since it is the most recent large climatic variation of global extent. Ice cores in Antarctica provide important paleoclimate proxies, such as regional temperature and global atmospheric CO2. However, temperature is recorded in the ice while CO2 is recorded in the enclosed air bubbles. The ages of the former and of the latter are different since air is trapped at 50–120 m below the surface. It is therefore necessary to correct for this air-ice shift to accurately infer the sequence of events. Here we accurately determine the phasing between East Antarctic temperature and atmospheric CO2 variations during the last deglacial warming based on Antarctic ice core records. We build a stack of East Antarctic temperature variations by averaging the records from 4 ice cores (EPICA Dome C, Dome Fuji, EPICA Dronning Maud Land and Talos Dome), all accurately synchronized by volcanic event matching. We place this stack onto the WAIS Divide WD2014 age scale by synchronizing EPICA Dome C and WAIS Divide using volcanic event matching, which allows comparison with the high resolution CO2 record from WAIS Divide. Since WAIS Divide is a high accumulation site, its air age scale, which has previously been determined by firn modeling, is more robust. Finally, we assess the CO2/Antarctic temperature phasing by determining four periods when their trends change abruptly. We find that at the onset of the last deglaciation and at the onset of the Antarctic Cold Reversal (ACR) period CO2 and Antarctic temperature are synchronous within a range of 210 years. Then CO2 slightly leads by 165 ± 116 years at the end of the Antarctic Cold Reversal (ACR) period. Finally, Antarctic temperature significantly leads by 406 ± 200 years at the onset of the Holocene period. Our results further support the hypothesis of no convective zone at EPICA Dome C during the last deglaciation and the use of nitrogen-15 to infer the height of the diffusive zone. Future climate and carbon cycle modeling works should take into account this robust phasing constraint.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-28
    Description: We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-08
    Description: The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth–age relationship. Here, we present the SPICEcore (SP19) timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54 302±519 BP (years before 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11 341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach ±25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm yr−1 (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude and δ15N of N2 in turn are as expected for the accumulation rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...