ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 13 (1978), S. 2358-2364 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Epitaxial growth of GaN on sapphire substrates using an open-tube growth furnace has been carried out to study the effects of substrate orientation and transfer gas upon the properties of the layers. It has been found that for the (0001) substrates, surface appearance was virtually independent of carrier gas and of doping levels. For the (1 ¯102) substrates surface faceting was greatly reduced when He was used as a transfer gas as opposed to H2. Faceting was also reduced when the GaN was doped with Zn and the best surfaces for the (1 ¯102) substrates were obtained in a Zn-doped run using He as the transfer gas. The best sample in terms of electrical properties for the (1¯102) substrate had a mobility greater than 400 cm2 V−1 sec−1 and a carrier concentration of about 2 × 1017 cm−3. This sample was undoped and used He as the transfer gas. The best (0001) sample was also grown undoped with He as the transfer gas and had a mobility of 300cm2V−1 sec−1 and a carrier concentration of 1 × 1018 cm−3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1978-11-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1975-03-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The Space Shuttle Columbia was launched as STS-75 at 2018 GMT (Greenwich Mean Time) on February 22, 1996. One of the two major experiment packages was the Third United States Microgravity Payload (USMP-3), and one of the principal instruments on the USMP was the Advanced Automated Directional Solidification Furnace (AADSF). The AADSF is a multizone directional solidification furnace, and at the time of the USMP-3 flight was capable of processing only one sample per Shuttle mission which, for that flight, was a lead tin telluride (PbSnTe) crystal growth experiment. In the one year since the flight experiment the sample has been retrieved from the spacecraft and analysis has begun. After presenting introductory material on why PbSnTe was chosen as a test material, why microgravity processing was expected to produce desired results, and what we expected to find in conducting these tests, this report discusses the results to date which are far from complete.
    Keywords: Solid-State Physics
    Type: Third United States Microgravity Payload: One Year Report; 53-81; NASA/CP-1998-207891
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The growth of the alloy compound semiconductor lead tin telluride (PbSnTe) was chosen for a microgravity flight experiment in the Advanced Automated Directional Solidification Furnace (AADSF), on the United States Microgravity Payload-3 (USNP-3) in February, 1996 and on USNW- 4 in November, 1997. The objective of these experiments was to determine the effect of the reduction in convection, during the growth process, brought about by the microgravity environment. The properties of devices made from PbSnTe, an alloy of PbTe and SnTe, are dependent on the ratio of the elemental components in the starting crystal. Compositional uniformity in the crystal is only obtained if there is no significant mixing in the liquid during growth. The technological importance of PbSnTe lies in its band gap versus composition diagram which has a zero energy crossing at approximately 40% SnTe. This facilitates the construction of long wavelength (greater than 6 gm) infrared detectors and lasers. The properties and utilization of PbSnTe are the subject of other papers. 1,2 PbSnTe is also interesting from a purely scientific point of view. It is, potentially, both solutally and thermally unstable due to the temperature and density gradients present during growth. Density gradients, through thermal expansion, are imposed in directional solidification because temperature gradients are required to extract heat. Solutal gradients occur in directional solidification of alloys due to segregation at the interface. Usually the gradients vary with both experiment design and inherent materials properties. In a simplified one dimensional analysis with the growth axis parallel to the gravity vector, only one of the two instabilities work at a time. During growth, the temperature in the liquid increases ahead of the interface. Therefore the density, due to thermal expansion, is decreasing in that direction. However, the phase diagram shows that the lighter SnTe is preferentially rejected at the interface. This causes the liquid density to increase with distance away from the interface.
    Keywords: Solid-State Physics
    Type: Fourth United States Microgravity Payload: One Year Report; 87-93; NASA/CP-1999-209628
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The solid-liquid interface position and the temperature gradients in both the solid and liquid at the interface have been studied in a modified Bridgman-Stockbarger crystal growth furnace. These crystal growth factors have been studied as a function of ampoule translation rate, materials properties, and the size and temperature of a small auxiliary heater placed at the edge of the furnace hot zone. It has been found that the interface position with respect to a furnace reference point is essentially constant during a run for a low thermal conductivity material whereas the interface position changes continuously during a run with high thermal conductivity material. However, the ampoule translation rate and auxiliary heater conditions produce interface position changes in both high and low thermal conductivity materials.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Crystal Growth (ISSN 0022-0248); 69; 509-514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-16
    Description: Silane for polycrystalline films deposition on oxidized silicon wafers, noting substrate temperature effects on preferred orientation of deposits
    Keywords: PHYSICS, SOLID-STATE
    Type: ; 24, 28 (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-16
    Description: The resistivity of doped polycrystalline silicon films has been studied as a function of post deposition heat treatments in an oxidizing atmosphere. It was found that a short oxidation cycle may produce a resistivity increase as large as three orders of magnitude in the polycrystalline films. The extent of change was dependent on the initial resistivity and the films' doping level and was independent of the total oxidation time.
    Keywords: SOLID-STATE PHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-16
    Description: The electrical resistivity of polycrystalline silicon films has been studied as a function of doping concentration and heat treatment. The films were grown by the chemical vapor decomposition of silane on oxidized silicon wafers. The resistivity of the as-deposited films was widely scattered but independent of dopant atom concentration at the lightly doped levels and was strong function of dopant level in the more heavily doped regions. Postdeposition heat treatments in an oxidizing atmosphere remove scatter in the data. The resultant resistivity for dopant levels less than 10 to the 16th atoms/per cu cm was approximately equal to that of intrinsic silicon. In the next 2 orders of magnitude increase in dopant level, the resistivity dropped 6 orders of magnitude. A model, based on high dopant atom segregation in the grain boundaries, is proposed to explain the results.
    Keywords: SOLID-STATE PHYSICS
    Type: Journal of Applied Physics; 46; Mar. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-16
    Keywords: PHYSICS, SOLID-STATE
    Type: Electrochemical Society; vol. 120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...