ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-16
    Description: Low-frequency earthquakes (LFEs), which frequently originate from multiplet-generating sources that are closely linked with tectonic tremor in subduction zones around the world, are difficult to observe and characterize due to their low signal-to-noise ratios. This obstacle can be sidestepped by detecting and then stacking all of the multiplets of a master LFE event, or template, using a matched-filter search; the difficulty however lies in finding an LFE event to use as a template. We implement here an automated beamforming algorithm to detect LFEs within the Mexican subduction zone that can then be used as templates in a matched-filter search. Seismograms recorded on a network of seismic stations are aligned to match the moveout of a potential source at depth and their energies are then summed; any spikes in the summed energy indicate an event originating from that potential source. We apply this method to a 1-d test case and we are able to detect 381 unique, potential LFE templates. We then compare our method to a previously introduced LFE detection scheme based on multiplet correlations for three test cases and find that the two methods are complementary.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-28
    Description: Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...