ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-01
    Print ISSN: 0021-9142
    Electronic ISSN: 2195-0571
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-06-28
    Description: Spacecraft orbital control requires intensive interaction between the analyst and the system used to model the spacecraft trajectory. For orbits with right mission constraints and a large number of maneuvers, this interaction is difficult or expensive to accomplish in a timely manner. Some automation of maneuver planning can reduce these difficulties for maneuver-intensive missions. One approach to this automation is to use fuzzy logic in the control mechanism. Such a prototype system currently under development is discussed. The Tropical Rainfall Measurement Mission (TRMM) is one of several missions that could benefit from automated maneuver planning. TRMM is scheduled for launch in August 1997. The spacecraft is to be maintained in a 350-km circular orbit throughout the 3-year lifetime of the mission, with very small variations in this orbit allowed. Since solar maximum will occur as early as 1999, the solar activity during the TRMM mission will be increasing. The increasing solar activity will result in orbital maneuvers being performed as often as every other day. The results of automated maneuver planning for the TRMM mission will be presented to demonstrate the prototype of the fuzzy logic tool.
    Keywords: ASTRODYNAMICS
    Type: Flight Mechanics(Estimation Theory Symposium, 1994; p 49-62
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.
    Keywords: ASTRODYNAMICS
    Type: Flight Mechanics(Estimation Theory Symposium, 1994; p 253-267
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: It is shown that transfer trajectories to the halo orbit exist throughout the year, with a one week closure of the launch window each month because of unfavorable lunar perturbations that cannot be corrected in the case of transfer trajectory insertion errors. The launch window for transfers to large-amplitude Lissajous orbits is virtually the same as that for transfers to the baseline halo orbit. Details of these trajectories are described and questions about groundstation coverage are discussed.
    Keywords: ASTRODYNAMICS
    Type: IAF PAPER 92-0066
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Two alternative mission profiles are presented for the WIND mission whose baseline design includes two years in a double lunar swingby (DLS) orbit followed by one year in a Lissajous orbit about the sun-earth L1 libration point. The first alternative uses a half-month high-inclination transfer orbit between two lunar gravity assists to change the initial sunward DLS orbit to a DLS orbit in the geomagnetic tail region. The second alternative uses a direct insertion from launch into a large-amplitude Lissajous orbit followed by a sunward DLS orbit.
    Keywords: ASTRODYNAMICS
    Type: IAF PAPER 92-0065
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-100720 , REPT-89B00065 , NAS 1.15:100720
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-100719 , REPT-89B00065 , NAS 1.15:100719
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-100721 , REPT-89B00065 , NAS 1.15:100721
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Interplanetary Physics Laboratory, WIND, will be placed in a small-amplitude halo orbit in late 1995. A lunar swingby is used to achieve the halo orbit. Using the lunar swingby reduces the fuel required to achieve the desired orbit. The spacecraft's position and velocity with respect to the Moon near the time of swingby are shown to determine the characteristics of the halo orbit. The shape of the halo orbit, its x-, y-, and z-amplitudes, must be designed to meet mission constraints. A convenient set of parameters for displaying the dependence of the halo orbit's shape upon the lunar swingby is formulated. The use of the lunar swingby adds additional constraints to the trajectory in terms of attainable swingby parameters. Strategies for obtaining the desired swingby parameters in view of these mission constraints are discussed. The limits on attainable halo orbit shapes using the lunar swingby technique are discussed in terms of minimum and maximum x-, y-, and z-amplitudes. The relevance of previous work on this topic is discussed.
    Keywords: ASTRODYNAMICS
    Type: In: Spaceflight dynamics 1993; AAS(NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2 . A95-85716 (ISSN 0065-3438); p. 651-663
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...