ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-01-17
    Description: Motivation: Systems Genetics approaches, in particular those relying on genetical genomics data, put forward a new paradigm of large-scale genome and network analysis. These methods use naturally occurring multi-factorial perturbations (e.g. polymorphisms) in properly controlled and screened genetic crosses to elucidate causal relationships in biological networks. However, although genetical genomics data contain rich information, a clear dissection of causes and effects as required for reconstructing gene regulatory networks is not easily possible. Results: We present a framework for reconstructing gene regulatory networks from genetical genomics data where genotype and phenotype correlation measures are used to derive an initial graph which is subsequently reduced by pruning strategies to minimize false positive predictions. Applied to realistic simulated genetic data from a recent DREAM challenge, we demonstrate that our approach is simple yet effective and outperforms more complex methods (including the best performer) with respect to (i) reconstruction quality (especially for small sample sizes) and (ii) applicability to large data sets due to relatively low computational costs. We also present reconstruction results from real genetical genomics data of yeast. Availability: A MATLAB implementation (script) of the reconstruction framework is available at www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html Contact: klamt@mpi-magdeburg.mpg.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-29
    Description: Motivation : Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). Results : In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. Availability : An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html . Contact : flassig@mpi-magdeburg.mpg.de Supplementary information : Supplementary data are are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-21
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-09
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...