ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-27
    Description: Scientific knowledge of transient and difficult-to-access airborne volcanic emissions comes primarily from remote sensing observations, and a few in situ data from sporadic heroic or inadvertent airborne encounters. In the past, patchy knowledge of the composition and behaviour of such plumes from explosive volcanic eruptions, and associated drifting ash and gas clouds, have centrally contributed to unwanted and dangerous aircraft encounters that have put crews at risk and, in some cases, greatly damaged aircraft. Thus, improved knowledge of boundary conditions and plume composition, as inputs to both mass retrieval and predictive models for cloud trajectories , would be of benefit. In this paper, we describe how small robotic unmanned aerial vehicles (sUAVs) can address a variety of measurements that are typically beyond the reach of, and sometimes too dangerous for, manned aircraft. The direct measurements and sampling that can be achieved by sUAVs address serious gaps in knowledge of volcanic processes, and provide important validation data for estimations of volcanogenic ash and gas concentrations gleaned using remote sensing techniques. These data, in turn, constrain key proximal and distal boundary conditions for aerosol and gas transport models on which are based a number of decisions and evaluations by hazard responders and regulatory agencies. We briefly describe a case study from our ongoing field study at Turrialba Volcano in Costa Rica, where we are conducting an international campaign of systematic airborne in situ measurements of volcanogenic SO 2 and other gases, as well as aerosols, with sUAVs and aerostats (e.g. tethered balloons and kites), in conjunction with data acquisitions by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer onboard the NASA Terra Earth orbital platform. To our knowledge, this is the first such systematic in situ UAV- and aerostat-based observation programme for SO 2 and particulates in a volcanic plume for correlation with orbital data. We preliminarily report good agreement between our UAV/aerostat and ASTER SO 2 retrievals within a 5 km radius of the volcano summit, at altitudes of up to 12 500 ft ( c. 3850 m) above sea level (asl) for concentrations within the range of 5–20 ppmv (ppm by volume). Additional work continues.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-19
    Description: Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s−1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-22
    Description: Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s−1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The COMEX (CO2 and MEthane eXperiment) campaign supports the mission definition of CarbonSat and HyspIRI (Hyperspectral Infrared Imager) by providing representative airborne remote sensing data MAMAP (Methane Airborne MAPper) for CarbonSat; the Airborne Visual InfraRed Imaging Spectrometer (Classic & Next Generation) AVIRISC/AVIRISNG for HyspIRI as well as ground-based and airborne insitu data. The objectives of the COMEX campaign activities are (see Campaign Implementation Plan (RD4)): 1. Investigate spatial/spectral resolution tradeoffs for CH4 anomaly detection and flux inversion by comparison of MAMAPderived emission estimates with AVIRIS/AVIRISNG derived data. 2. Evaluate sunglint observation geometry on CH4 retrievals for marine sources. 3. Characterize the effect of Surface Spectral Reflectance (SSR) heterogeneity on trace gas retrievals of CO2 and CH4 for medium and lowresolution spectrometry. 4. Identify benefits from joint SWIR/TIR (ShortWave InfraRed/Thermal InfraRed ) data for trace gas detection and retrieval by comparison of MAMAP and AVIRIS/AVIRISNG NIR/SWIR data with MAKO (Aerospace Corp.)TIR data. The ability to derive emission source strength for a range of strong emitting targets by remote sensing will be evaluated from combined AVIRISNG and MAMAP data, adding significant value to the HyspIRI campaign AVIRISNG dataset. The data will be used to quantify anomalies in atmospheric CO2 and CH4 from strong local greenhouse gas sources e.g. localized industrial complexes, landfills, etc. and to derive CO2 and CH4 emissions estimates from atmospheric gradient measurements. The original campaign concept was developed by University of Bremen and BRI. The COMEX campaign is funded bilaterally by NASA and ESA (European Space Agency). Whereas NASA funds the US part of the project via a contract with Dr. Ira Leifer, BRI (Bubbleology Research International), the contribution of MAMAP to the COMEX campaign is funded by ESA within the COMEXE project and NASA with respect to a 50 percent contribution to the flight-related costs of flying MAMAP on a US aircraft. The Data Acquisition Report (RD9) describes the instrumentation used, the measurements made by the team during the COMEX campaign in May/June 2014 and August/September 2014 in California, and an initial assessment of the data quality.
    Keywords: Environment Pollution
    Type: ARC-E-DAA-TN32818
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: The Sensor Integrated Evaluation Remote Research Aircraft (SIERRA-B) is a medium-class, unmanned aircraft system (UAS) that can perform remote sensing and atmospheric sampling missions in isolated and often inaccessible regions, such as over mountain ranges, the open ocean, or the Arctic. This capability developed by NASA Ames Research Center is a unique way for Scientists and Engineers to gather important Earth science data as well as perform flight research using an innovative, safe, and cost-effective aerial platform. This poster describes the aircraft system architecture, capabilities, and provides an overview of current payloads and mission concepts.
    Keywords: Aircraft Design, Testing and Performance; Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN68752 , Federal UAS Workshop; May 14, 2019 - May 16, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes conflicting requirements. *
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN21396 , International Symposium on Remote Sensing of Environment (ISRSE); May 11, 2015 - May 15, 2015; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...