ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer
    Call number: PIK N 071-92-0729
    Type of Medium: Monograph available for loan
    Pages: XI, 321 S. : Ill., graph. Darst., Kt.
    ISBN: 038797640X , 3-540-97640-X
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 6 (1976), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We investigated the effects of long-term enrichment with nitrate, phosphate, and nitrate+phosphate on the first 5 weeks of leaf detritus processing in laboratory stream microecosystems. Enrichment with nitrate+phosphate accelerated leaf weight loss and increased rates of respiration associated with the leaves. However, whole-system respiration was little changed from that observed in the control stream since respiration in the water was greatly reduced. Enrichment with phosphate alone had little effect except to lower respiration associated with leaf discs. Enrichment with nitrate alone also decreased leaf-disc respiration but resulted in a greatly increased rate of respiration in the water. Net leaching and fragmentation of carbon from the leaves was also increased by nitrate enrichment.Nitrogen and phosphorus levels in leaf material were little affected by enrichment with nitrate or phosphorus alone. Leaves in those streams and in the control stream released nitrogen and phosphorus to the water. In contrast, percent nitrogen and phosphorus increased greatly in the leaves in the stream enriched with both nitrate and phosphate. The leaves in this system immobilized both nitrogen and phosphorus from the water.We also studied the importance of nitrogen fixation as a vector for nitrogen incorporation associated with leaf decomposition in streams. Somewhat surprisingly, fixation by microbes associated with the leaves and by microbes suspended in the water occurred under all three experimental enrichment treatments as well as in the control, casting doubt on the effectiveness of nitrate in inhibiting nitrogenase synthesis in nature. However, N2-fixation is only a minor source of nitrogen for leaves decaying under the conditions studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 11 (1981), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. Rates of photosynthesis and community respiration were determined for benthic assemblages in Sycamore Creek, a Sonoran Desert stream in Arizona. Benthos in this stream can be separated into (1) mats of Cladophora glomerata and associated epiphytes and (2) assemblages of epipelic diatoms and blue-green algae. Community respiration and net photosynthesis were measured for these assemblages using submerged light-dark chambers in situ. Multiple regression analysis was used to predict (1) gross photosynthesis as a function of photosynthetically active radiation, temperature and chlorophyll-α concentration; and (2) community respiration as a function of temperature and biomass.Calculations suggest that Sycamore Creek is autotrophic during the summer (P/R= 1.7) and that the rates of gross photosynthesis (P=8.5 g O2 m−2 day−1) and community respiration (R= 5.1 g O2 m−2 day−1) are high for a small stream. Considerable difference exists between the Cladophora mat assemblages, in which mean P is 12.5gO2m−2 day−1and the P/R ratio is 2.3, and the epipelic assemblages in which mean P is 4.4 g O2m−2 day−1 and P/R is 0.96. The high rate of gross photosynthesis, low litter inputs, high biomass of algae and the intermittent but severe floods that characterize Sycamore Creek indicate that this stream and other similar desert streams are net exporters of organic matter and are, thereby, truly autotrophic stream ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 9 (1979), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. The primary production and general ecology of a periphyton community of a New England, lowland stream were studied over a seventeen-month period. Temperature, light, periphyton chlorophyll-α, and community structure were monitored regularly. Seasonally distinct chlorophyll peaks coincided with the light maximum in early May, just prior to the appearance of leaves of riparian trees, and again in autumn after terrestrial leaf fall. During midwinter, despite low light and temperature levels and high stream discharge, mean chlorophyll concentrations remained similar to summer values.A mathematical expression relating periphyton photosynthesis per unit chlorophyll-α to temperature, light and periphyton density was established with submersible light-dark chambers in situ. Survey data collected over the study period were employed in the empirical equation to estimate seasonal variations in periphyton primary production. Weekly mean daily estimates of periphyton gross production ranged from 〈 0.1 g O2 m−2, during midwinter, to 6.5 g O2 m−2 during early May. Estimated annual periphyton gross production and respiration were 0.58 and 1.27 kg O2 m−2, respectively. Factors influencing seasonal variations of Fort River periphyton standing crop are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The impact of flash flooding on microbial distribution and biogeochemistry was investigated in the parafluvial zone (the part of the active channel lateral to the surface stream) of Sycamore Creek, a Sonoran Desert stream in central Arizona.2. It was hypothesized that subsurface bacteria were dependent on the import of algal-derived organic matter from the surface stream, and it was therefore predicted that microbial numbers and rates of microbially mediated processes would be highest at locations of surface to subsurface hydrologic exchange and at times when algal biomass was high.3. Prior to a flash flood on 19 July 1994, chlorophyll a was high (≈ 400 mg m–2) in the surface stream and microbial numbers were highest at the stream–parafluvial interface and declined along parafluvial flowpaths, supporting the hypothesized algal–bacterial linkage. Immediately following the flash flood, chlorophyll a was low (≈ 7 mg m–2), and microbial numbers were reduced at the stream–parafluvial interface.4. Counter to expectations, parafluvial functioning (in terms of nitrate production and dissolved oxygen decline along flowpaths) re-established immediately after the flood receded. Therefore, material other than algal exudates supported parafluvial metabolism immediately postflood, and terrestrially derived dissolved organic matter is the likely source.5. Algae in the surface stream recovered quickly following flooding, but recovery of parafluvial bacteria lagged somewhat behind. These results highlight the importance of surface–subsurface interaction to stream ecosystem functioning and show that the nature of these interactions changes substantially in successional time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0629
    Keywords: Key words: stream; riparian; disturbance; nutrients; hyporheic; hydrology; telescoping ecosystem.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Stream ecosystems consist of several subsystems that are spatially distributed concentrically, analogous to the elements of a simple telescope. Subsystems include the central surface stream, vertically and laterally arrayed saturated sediments (hyporheic and parafluvial zones), and the most distal element, the riparian zone. These zones are hydrologically connected; thus water and its dissolved and suspended load move through all of these subsystems as it flows downstream. In any given subsystem, chemical transformations result in a change in the quantity of materials in transport. Processing length is the length of subsystem required to “process” an amount of substrate equal to advective input. Long processing lengths reflect low rates of material cycling. Processing length provides the length dimension of each cylindrical element of the telescope and is specific to subsystem (for example, the surface stream), substrate (for instance, nitrate), and process (denitrification, for example). Disturbance causes processing length to increase. Processing length decreases during succession following disturbance. The whole stream-corridor ecosystem consists of several nested cylindrical elements that extend and retract, much as would a telescope, in response to disturbance regime. This telescoping ecosystem model (TEM) can improve understanding of material retention in running water systems; that is, their “nutrient filtration” capacity. We hypothesize that disturbance by flooding alters this capacity in proportion to both intensity of disturbance and to the relative effect of disturbance on each subsystem. We would expect more distal subsystems (for example, the riparian zone) to show the highest resistance to floods. In contrast, we predict that postflood recovery of functions such as material processing (that is, resilience) will be highest in central elements and decrease laterally. Resistance and resilience of subsystems are thus both inversely correlated and spatially separated. We further hypothesize that cross-linkages between adjacent subsystems will enhance resilience of the system as a whole. Whole-ecosystem retention, transformation, and transport are thus viewed as a function of subsystem extent, lateral and vertical linkage, and disturbance regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 725-736 
    ISSN: 1432-1009
    Keywords: Succession ; Disturbance ; Stability ; Streams ; Ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The concept of succession has a distinguished history in general ecology and has been applied to stream ecosystems with some success. Succession in streams is largely secondary, follows initial floristics models, and occurs through a variety of mechanisms. The process is moderately predictable but is highly influenced by “climatic” factors, particularly nutrient chemistry. In desert streams, succession does not result in a climax state. While evidence is slim, succession may not be a significant process in streams of certain types or in certain regions. Successional theory is difficult to apply in spatially heterogeneous, hierarchically organized ecosystems. It also suffers in being only one component of a better integrated concept, that of ecosystem stability, which deals more directly with disturbance and ecosystem resistance in addition to resilience (which encompasses succession). Succession has so suffered from a half century of confusion that a strong case can be made for abandoning the term, at least as it applies in streams, in favor of the broader view provided by stability theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Benthic algae ; Spates ; Recovery ; Scour ; Enrichment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We conducted a manipulative field experiment to examine individual and interactive effects of scour and short-term nutrient enrichment (4 h exposure) on postspate recovery of benthic algae in a desert stream. We then compared recovery from these simulated-spate conditions to algal recovery patterns following a natural spate that increased water-column nutrient levels for 2 weeks. That event differentially scoured communities on artificial substrata in place for a long-term experiment, significantly reducing biomass in 49-day-old communities but causing no significant reduction of biomass in older, 133-day-old communities. Thus, we were able to examine recovery of scoured and non-scoured benthic algal communities under natural post-spate conditions. Both natural and simulated spates reduced actual and relative abundances of diatoms within communities. In the manipulative experiment, scoured communities accrued biomass more rapidly than those not subjected to scour, but short-term enrichment had not effect. Accrual of diatoms and green algae was stimulated by the scour manipulations, while cyanobacteria maintained equal rates of growth in all treatments. Following the natural spate, diatom and green-algal densities increased in scoured communities, but recovery of algal biomass was slow on both scoured and non-scoured substrata, primarily because cyanobacteria, the dominant algal group on all tiles, did not increase under exposure to highly nitrate-enriched waters. Rates of algal cell accrual were inversely correlated with the amount of algal biomass present at the start of a recovery sequence. Algal immigration rates measured immediately after the natural spate and during an interflood period in the same season did not differ, indicating that the algal drift pool was not augmented by disturbance. Benthic algal recovery following spates is strongly influenced by the degree of scour generated by the event, but recovery patterns are also affected by the length of post-spate enrichment and the taxonomic composition of the affected community.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 49 (1976), S. 175-187 
    ISSN: 1573-5117
    Keywords: Stream ; river ; ecosystem ; macrophytes ; primary production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Primary production and ecosystem respiration of the Fort River ecosystem, a medium size (mean discharge 1.4 m3/sec) lowland stream in central Massachusetts, U.S.A., were measured using diurnal oxygen techniques from May 1972 to November 1973. During the summer of 1973, vascular hydrophyte production was measured with a modified cropping technique. Whole ecosystem gross primary production ranged from 0.44 g O2/m2:day in winter to 6.50 g O2/m2.day in summer, and averaged 1.78 g O2/m2.day for 12 months. Mean ecosystem respiration was 3.65 g O2/m2.day for 12 months. Mean ecosystem respiration was 3.65 g O2/m2.day. Macrophyte gross production (59.9 g O2/m2.year) constitutes 9.2% of annual ecosystem productivity and 15.2% of summer primary production. Macrophytes were little grazed and entered food webs only after death, as detritus. Decomposition occurred near the site of production at relatively rapid rates, thus transport of dead macrophyte material in stream water was low. Data from this and other stream ecosystems suggest that in general, streams are only moderately productive ecosystems which depend to varying degrees on watershed-derived organic matter inputs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 83 (1981), S. 303-312 
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; streams ; deserts ; nutrient limitation ; production ; Arizona
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen to phosphorus ratios and concentrations of nitrate and soluble reactive phosphate are presented for an array of Southwestern streams as evidence that nitrogen is the limiting nutrient where such limitation occurs. Nitrate uptake in sections of intermittent streams was attributable to autotrophic activity. Uptake of soluble reactive phosphate was unrelated to any indicator of autotrophic activity, thus concentrations of this nutrient in desert and semi-desert stream waters may be controlled by other factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...