ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2002-01-01
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.
    Keywords: METALLIC MATERIALS
    Type: NASA-CR-185174 , DOE/NASA/0282-1 , NAS 1.26:185174 , R89-917447-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.
    Keywords: METALLIC MATERIALS
    Type: NASA, Marshall Space Flight Center, Advanced Earth-to-Orbit Propulsion Technology 1988, Volume 1; p 510-518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 25 (2002), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Experimental and computational methods were developed to model three-dimensional (3-D) mixed-mode crack growth under fatigue loading with the objective of evaluating proposed 3-D fracture criteria. The experiments utilized 7075-T73 aluminium forgings cut into modified ASTM E740 surface crack specimens with pre-cracks orientated at angles of 30, 45 and 60° in separate tests. The progress of the evolving fatigue crack was monitored in real time using an automated visualization system. In addition, the amplitude of the loading was increased at prescribed intervals to mark the location of the 3-D crack front for post-test inspection. In order to evaluate proposed crack growth equations, computer simulations of the experiments were conducted using a 3-D fracture model based on the surface integral method. An automatic mesher advanced the crack front by adding a ring of elements consistent with local application of fracture criteria governing rate and direction of growth. Comparisons of the computational and experimental results showed that the best correlation was obtained when KII and KIII were incorporated in the growth rate equations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...