ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-09
    Description: We study the late-time evolution of the central regions of two Milky Way (MW)-like simulations of galaxies formed in a cosmological context, one hosting a fast bar and the other a slow one. We find that bar length, Rb, measurements fluctuate on a dynamical time-scale by up to 100 per cent, depending on the spiral structure strength and measurement threshold. The bar amplitude oscillates by about 15 per cent, correlating with Rb. The Tremaine–Weinberg method estimates of the bars’ instantaneous pattern speeds show variations around the mean of up to $sim !20{{ m per cent}}$, typically anticorrelating with the bar length and strength. Through power spectrum analyses, we establish that these bar pulsations, with a period in the range ∼60–200 Myr, result from its interaction with multiple spiral modes, which are coupled with the bar. Because of the presence of odd spiral modes, the two bar halves typically do not connect at exactly the same time to a spiral arm, and their individual lengths can be significantly offset. We estimated that in about 50 per cent of bar measurements in MW-mass external galaxies, the bar lengths of SBab-type galaxies are overestimated by $sim !15{{ m per cent}}$ and those of SBbc types by $sim !55{{ m per cent}}$. Consequently, bars longer than their corotation radius reported in the literature, dubbed ‘ultrafast bars’, may simply correspond to the largest biases. Given that the Scutum–Centaurus arm is likely connected to the near half of the MW bar, recent direct measurements may be overestimating its length by 1–1.5 kpc, while its present pattern speed may be 5–10 $ m km s^{-1} kpc^{-1}$ smaller than its time-averaged value.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-24
    Description: We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large-scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended solar neighbourhood.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-26
    Description: We present a study of the intrinsic deprojected ellipticity distribution of the satellite dwarf galaxies of the Andromeda galaxy, assuming that their visible components have a prolate shape, which is a natural outcome of simulations. Different possibilities for the orientation of the major axis of the prolate dwarf galaxies are tested, pointing either as close as possible to the radial direction towards the centre of Andromeda, or tangential to the radial direction, or with a random angle in the plane that contains the major axis and the observer. We find that the mean intrinsic axis ratio is ~1/2, with small differences depending on the assumed orientation of the population. Our deprojections also suggest that a significant fraction of the satellites, ~10 per cent, are tidally disrupted remnants. We find that there is no evidence of any obvious difference in the morphology and major axis orientation between satellites that belong to the vast thin plane of corotating galaxies around Andromeda and those that do not belong to this structure.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-04
    Description: In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the Spectrographe pour l'Observation des PHénomènes des Intérieurs Stellaires et des Exoplanètes spectrograph at the Haute–Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 per cent when the astrometric measurements of Gaia are taken into account. In this paper, we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 d. Using the todmor algorithm, we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 per cent for the 10 binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 and 1.2 per cent, respectively.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-18
    Description: We present an analysis of the presence of substructures in the stellar stream of the Palomar 5 globular cluster, as derived from Sloan Digital Sky Survey data. Using a matched filter technique, we recover the positions and sizes of overdensities reported in previous studies. To explore the reality of these structures, we also create an artificial model of the stream, in which we construct a realistic background on top of which we add a perfectly smooth stream structure, taking into account the effects of photometric completeness and interstellar extinction. We find that the smooth artificial stream then shows similarly pronounced substructures as the real structure. Interestingly, our best-fitting N -body simulation does display real projected density variations linked to stellar epicyclic motions, but these become less significant when taking into account the SDSS star-count constraints. The substructures found when applying our matched filter technique to the N -body particles converted into observable stars are thus mostly unrelated to these epicyclic motions. This analysis suggests that the majority of the previously detected substructures along the tidal tail of Palomar 5 are artefacts of observational inhomogeneities.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-27
    Description: This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson solver was used to simultaneously compute, from the baryonic mass distributions, model rotation curves and vertical velocity dispersion profiles, which were compared to the measured values. The two main free parameters, the stellar disk's mass-to-light ratio ( M / L ) and its exponential scaleheight ( h z ), were estimated by Markov Chain Monte Carlo modelling. The average best-fitting K -band stellar mass-to-light ratio was M / L ~= 0.55 ± 0.15. However, to match the DMS data, the vertical scaleheights would have to be in the range h z  = 200–400 pc which is a factor of 2 lower than those derived from observations of edge-on galaxies with a similar scalelength. The reason is that modified gravity versions of MOND characteristically require a larger M / L to fit the rotation curve in the absence of dark matter and therefore predict a stronger vertical gravitational field than Newtonian models. It was found that changing the MOND acceleration parameter, the shape of the velocity dispersion ellipsoid, the adopted vertical distribution of stars, as well as the galaxy inclination, within any realistic range, all had little impact on these results.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-10
    Description: Evidence for non-zero mean stellar velocities in the direction perpendicular to the Galactic plane has been accumulating from various recent large spectroscopic surveys. Previous analytical and numerical work has shown that a ‘breathing mode’ of the Galactic disc, similar to what is observed in the solar vicinity, can be the natural consequence of a non-axisymmetric internal perturbation of the disc. Here we provide a general analytical framework, in the context of perturbation theory, allowing us to compute the vertical bulk motions generated by a single internal perturber (bar or spiral pattern). In the case of the Galactic bar, we show that these analytically predicted bulk motions are well in line with the outcome of a numerical simulation. The mean vertical motions induced by the Milky Way bar are small (mean velocity of less than 1 km s –1 ) and cannot be responsible alone for the observed breathing mode, but they are existing. Our analytical treatment is valid close to the plane for all the non-axisymmetric perturbations of the disc that can be described by small-amplitude Fourier modes. Further work should study how the coupling of multiple internal perturbers and external perturbers is affecting the present analytical results.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-21
    Description: We present a dynamical measurement of the tangential motion of the Andromeda system, the ensemble consisting of the Andromeda galaxy (M31) and its satellites. The system is modelled as a structure with cosmologically motivated velocity dispersion and density profiles, and we show that our method works well when tested using the most massive substructures in high-resolution cold dark matter (CDM) simulations. Applied to the sample of 40 currently known galaxies of this system, we find a value for the velocity along the East and North directions of v East = –111.5 ± 70.2 km s –1 and v North = 99.4 ± 60.0 km s –1 , implying a transverse velocity significantly higher than previous estimates of the proper motion of M31 itself. This result has significant implications on estimates of the mass of the Local Group, as well as on its past and future history.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-04
    Description: The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this external field effect (EFE) can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this EFE also appears in the Solar system and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar system constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that Laser Interferometer Space Antenna Pathfinder will not be able to improve the current constraints on these still viable transition functions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-01
    Description: In anticipation of the Gaia astrometric mission, a sample of spectroscopic binaries is being observed since 2010 with the Spectrograph pour l'Observation des PHénomènes des Intérieurs stellaires et des Exoplanètes (SOPHIE) spectrograph at the Haute-Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 per cent when combined with Gaia astrometric measurements. In order to validate the masses derived from Gaia , interferometric observations are obtained for three SB2s in our sample with F-K components: HIP 14157, HIP 20601 and HIP 117186. The masses of the six stellar components are derived. Due to its edge-on orientation, HIP 14157 is probably an eclipsing binary. We note that almost all the derived masses are a few per cent larger than the expectations from the standard spectral type–mass calibration and mass–luminosity relation. Our calculation also leads to accurate parallaxes for the three binaries, and the Hipparcos parallaxes are confirmed.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...