ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising: 1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-2021 2. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). 3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (〉=60°N latitude) covered by 148 publications. 4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022.
    Keywords: Arctic; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; dry tundra; Eddy covariance; eddy heat flux; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; longwave radiation; meteorological data; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; wetland
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites 〉60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
    Keywords: Aggregation type; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Data source; Date/Time of event; Day of the year; Description; dry tundra; Eddy covariance; eddy heat flux; Event label; Field observation; First year of observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Institution; Instrument; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; meteorological data; Method comment; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; Sample height; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; Type of study; Unit; Variable; wetland
    Type: Dataset
    Format: text/tab-separated-values, 20562 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset comprises harmonized, standardized and aggregated in-situ observations of surface energy budget components measured at 64 sites on vegetated and glaciated sites north of 60° latitude, in the time period from 1994 till 2021. The surface energy budget components include net radiation, sensible heat flux, latent heat flux, ground heat flux, net shortwave radiation, net longwave radiation, surface temperature and albedo, which were aggregated to daily mean, minimum and maximum values from hourly and half-hourly measurements. Data were retrieved from the monitoring networks FLUXNET, AmeriFlux, AON, GC-Net and PROMICE.
    Keywords: Albedo; Albedo, maximum; Albedo, minimum; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Bowen ratio; Calculated from Ground heat, flux / Net radiation; Calculated from Heat, flux, latent / Net radiation; Calculated from Heat, flux, sensible / Heat, flux, latent; Calculated from Heat, flux, sensible / Net radiation; Calculated from Heat, flux, sensible + Heat, flux, latent + Ground heat, flux; Calculated from Long-wave downward radiation, maximum - Long-wave upward radiation, maximum; Calculated from Long-wave downward radiation, minimum - Long-wave upward radiation, minimum; Calculated from Long-wave downward radiation - Long-wave upward radiation; Calculated from Long-wave net radiation / Net radiation; Calculated from Short-wave downward (GLOBAL) radiation, maximum - Short-wave upward (REFLEX) radiation, maximum; Calculated from Short-wave downward (GLOBAL) radiation, minimum - Short-wave upward (REFLEX) radiation, minimum; Calculated from Short-wave downward (GLOBAL) radiation - Short-wave upward (REFLEX) radiation; Calculated from Short-wave net radiation, maximum + Long-wave net radiation, maximum; Calculated from Short-wave net radiation, minimum + Long-wave net radiation, minimum; Calculated from Short-wave net radiation / Net radiation; Calculated from Short-wave net radiation + Long-wave net radiation; Calculated from Short-wave upward (REFLEX) radiation / Short-wave downward (GLOBAL) radiation; Calculated from Surface temperature, maximum - Temperature, air, maximum; Calculated from Surface temperature, minimum - Temperature, air, minimum; Calculated from Surface temperature - Temperature, air; Cloud coverage; Cloud coverage, maximum; Cloud coverage, minimum; Daily maximum; Daily mean; Daily minimum; Data source; DATE/TIME; Day of the year; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Event label; Field observation; glacier; graminoids; Ground heat, flux; Ground heat, flux, maximum; Ground heat, flux, minimum; Ground heat, flux/Net radiation ratio; ground heat flux and net radiation; harmonized data; Heat, flux, latent; Heat, flux, latent, maximum; Heat, flux, latent, minimum; Heat, flux, latent/Net radiation ratio; Heat, flux, sensible; Heat, flux, sensible, maximum; Heat, flux, sensible, minimum; Heat flux, sensible/Net radiation ratio; high latitude; Humidity, relative; Humidity, relative, maximum; Humidity, relative, minimum; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave net radiation; Long-wave net radiation, maximum; Long-wave net radiation, minimum; Long-wave net radiation/Net radiation ratio; longwave radiation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; meteorological data; Month; Net radiation; Net radiation, maximum; Net radiation, minimum; Normalized by X / Potential incoming solar radiation, maximum * 100; observatory data; Original variable; Peat bog; Potential incoming solar radiation; Potential incoming solar radiation, maximum; Potential incoming solar radiation, minimum; Precipitation; Precipitation, daily, maximum; Precipitation, daily, minimum; Pressure, atmospheric; Pressure, atmospheric, maximum; Pressure, atmospheric, minimum; Radiation fluxes; Radiative energy budget; sensible heat flux; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave net radiation; Short-wave net radiation, maximum; Short-wave net radiation, minimum; Short-wave net radiation/Net radiation ratio; shortwave radiation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; shrub tundra; Soil water content, volumetric; Soil water content, volumetric, maximum; Soil water content, volumetric, minimum; surface energy balance; Surface temperature; Surface temperature, maximum; Surface temperature, minimum; synthetic data; Temperature, air; Temperature, air, maximum; Temperature, air, minimum; Temperature, soil; Temperature, soil, maximum; Temperature, soil, minimum; Temperature gradient, 0-2m above surface; Temperature gradient, 0-2m above surface, maximum; Temperature gradient, 0-2m above surface, minimum; tundra vegetation; Type of study; Vapour pressure deficit; Vapour pressure deficit, maximum; Vapour pressure deficit, minimum; wetland; Wind direction; Wind speed; Wind speed, maximum; Wind speed, minimum; Year of observation
    Type: Dataset
    Format: text/tab-separated-values, 17112737 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (〉=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
    Keywords: Arctic; Arctic_SEB_1; Arctic_SEB_1951-2009_1; Arctic_SEB_1965-2000_1; Arctic_SEB_1965-2000_2; Arctic_SEB_1965-2000_3; Arctic_SEB_1965-2000_4; Arctic_SEB_1969-2013_1; Arctic_SEB_1970-1972_1; Arctic_SEB_1970-1979_1; Arctic_SEB_1972-2004_1; Arctic_SEB_1972-2004_10; Arctic_SEB_1972-2004_11; Arctic_SEB_1972-2004_2; Arctic_SEB_1972-2004_3; Arctic_SEB_1972-2004_4; Arctic_SEB_1972-2004_5; Arctic_SEB_1972-2004_6; Arctic_SEB_1972-2004_7; Arctic_SEB_1972-2004_8; Arctic_SEB_1972-2004_9; Arctic_SEB_1979-1995_1; Arctic_SEB_1979-1995_2; Arctic_SEB_1979-1995_3; Arctic_SEB_1979-1995_4; Arctic_SEB_1979-2005_1; Arctic_SEB_1980-1981_1; Arctic_SEB_1981-1997_1; Arctic_SEB_1981-1997_2; Arctic_SEB_1983-2005_1; Arctic_SEB_1983-2005_2; Arctic_SEB_1983-2005_3; Arctic_SEB_1984-1991_1; Arctic_SEB_1985-1989_1; Arctic_SEB_1985-2016_1; Arctic_SEB_1988-1988_1; Arctic_SEB_1988-1988_2; Arctic_SEB_1988-1988_3; Arctic_SEB_1988-1988_4; Arctic_SEB_1988-1988_5; Arctic_SEB_1989-1990_1; Arctic_SEB_1990-1991_1; Arctic_SEB_1991-1991_1; Arctic_SEB_1991-1999_1; Arctic_SEB_1991-1999_2; Arctic_SEB_1991-1999_3; Arctic_SEB_1992-1992_1; Arctic_SEB_1992-1997_1; Arctic_SEB_1994-1994_1; Arctic_SEB_1994-1994_2; Arctic_SEB_1994-1994_3; Arctic_SEB_1994-1994_4; Arctic_SEB_1994-1996_1; Arctic_SEB_1994-1996_10; Arctic_SEB_1994-1996_11; Arctic_SEB_1994-1996_12; Arctic_SEB_1994-1996_13; Arctic_SEB_1994-1996_14; Arctic_SEB_1994-1996_15; Arctic_SEB_1994-1996_16; Arctic_SEB_1994-1996_17; Arctic_SEB_1994-1996_2; Arctic_SEB_1994-1996_3; Arctic_SEB_1994-1996_4; Arctic_SEB_1994-1996_5; Arctic_SEB_1994-1996_6; Arctic_SEB_1994-1996_7; Arctic_SEB_1994-1996_8; Arctic_SEB_1994-1996_9; Arctic_SEB_1994-2008_1; Arctic_SEB_1994-2008_2; Arctic_SEB_1994-2009_1; Arctic_SEB_1994-2015_1; Arctic_SEB_1994-2015_2; Arctic_SEB_1994-2015_3; Arctic_SEB_1994-2015_4; Arctic_SEB_1994-2015_5; Arctic_SEB_1994-2015_6; Arctic_SEB_1995-1995_1; Arctic_SEB_1995-1995_2; Arctic_SEB_1995-1996_1; Arctic_SEB_1995-1997_1; Arctic_SEB_1995-1997_2; Arctic_SEB_1995-1997_3; Arctic_SEB_1995-1997_4; Arctic_SEB_1995-1998_1; Arctic_SEB_1995-1999_1; Arctic_SEB_1996-1997_1; Arctic_SEB_1996-1999_1; Arctic_SEB_1996-2005_1; Arctic_SEB_1996-2005_2; Arctic_SEB_1996-2005_3; Arctic_SEB_1997-1998_1; Arctic_SEB_1997-1999_1; Arctic_SEB_1997-2018_1; Arctic_SEB_1997-2018_10; Arctic_SEB_1997-2018_11; Arctic_SEB_1997-2018_12; Arctic_SEB_1997-2018_13; Arctic_SEB_1997-2018_14; Arctic_SEB_1997-2018_15; Arctic_SEB_1997-2018_16; Arctic_SEB_1997-2018_17; Arctic_SEB_1997-2018_18; Arctic_SEB_1997-2018_19; Arctic_SEB_1997-2018_2; Arctic_SEB_1997-2018_20; Arctic_SEB_1997-2018_21; Arctic_SEB_1997-2018_22; Arctic_SEB_1997-2018_23; Arctic_SEB_1997-2018_24; Arctic_SEB_1997-2018_25; Arctic_SEB_1997-2018_3; Arctic_SEB_1997-2018_4; Arctic_SEB_1997-2018_5; Arctic_SEB_1997-2018_6; Arctic_SEB_1997-2018_7; Arctic_SEB_1997-2018_8; Arctic_SEB_1997-2018_9; Arctic_SEB_1998-1998_1; Arctic_SEB_1998-1999_1; Arctic_SEB_1998-2000_1; Arctic_SEB_1998-2001_1; Arctic_SEB_1998-2005_1; Arctic_SEB_1998-2011_1; Arctic_SEB_1998-2011_2; Arctic_SEB_1998-2011_3; Arctic_SEB_1998-2013_1; Arctic_SEB_1999-1999_1; Arctic_SEB_1999-2000_1; Arctic_SEB_1999-2008_1; Arctic_SEB_1999-2008_2; Arctic_SEB_1999-2009_1; Arctic_SEB_1999-2014_1; Arctic_SEB_2000-2000_1; Arctic_SEB_2000-2000_2; Arctic_SEB_2000-2000_3; Arctic_SEB_2000-2000_4; Arctic_SEB_2000-2002_1; Arctic_SEB_2000-2002_2; Arctic_SEB_2000-2002_3; Arctic_SEB_2000-2003_1; Arctic_SEB_2000-2003_2; Arctic_SEB_2000-2003_3; Arctic_SEB_2000-2007_1; Arctic_SEB_2000-2007_2; Arctic_SEB_2000-2007_3; Arctic_SEB_2000-2007_4; Arctic_SEB_2000-2008_1; Arctic_SEB_2000-2010_1; Arctic_SEB_2000-2011_1; Arctic_SEB_2000-2011_10; Arctic_SEB_2000-2011_11; Arctic_SEB_2000-2011_2; Arctic_SEB_2000-2011_3; Arctic_SEB_2000-2011_4; Arctic_SEB_2000-2011_5; Arctic_SEB_2000-2011_6; Arctic_SEB_2000-2011_7; Arctic_SEB_2000-2011_8; Arctic_SEB_2000-2011_9; Arctic_SEB_2000-2014_1; Arctic_SEB_2001-2003_1; Arctic_SEB_2002-2002_1; Arctic_SEB_2002-2003_1; Arctic_SEB_2002-2003_2; Arctic_SEB_2002-2004_1; Arctic_SEB_2002-2010_1; Arctic_SEB_2002-2012_1; Arctic_SEB_2002-2012_2; Arctic_SEB_2002-2012_3; Arctic_SEB_2003-2003_1; Arctic_SEB_2003-2004_1; Arctic_SEB_2003-2007_1; Arctic_SEB_2003-2008_1; Arctic_SEB_2003-2008_2; Arctic_SEB_2003-2010_1; Arctic_SEB_2003-2010_2; Arctic_SEB_2003-2010_3; Arctic_SEB_2003-2011_1; Arctic_SEB_2004-2004_1; Arctic_SEB_2004-2006_1; Arctic_SEB_2004-2013_1; Arctic_SEB_2005-2005_1; Arctic_SEB_2006-2006_1; Arctic_SEB_2006-2006_2; Arctic_SEB_2006-2007_1; Arctic_SEB_2006-2007_10; Arctic_SEB_2006-2007_11; Arctic_SEB_2006-2007_12; Arctic_SEB_2006-2007_13; Arctic_SEB_2006-2007_14; Arctic_SEB_2006-2007_2; Arctic_SEB_2006-2007_3; Arctic_SEB_2006-2007_4; Arctic_SEB_2006-2007_5; Arctic_SEB_2006-2007_6; Arctic_SEB_2006-2007_7; Arctic_SEB_2006-2007_8; Arctic_SEB_2006-2007_9; Arctic_SEB_2006-2008_1; Arctic_SEB_2006-2008_2; Arctic_SEB_2006-2009_1; Arctic_SEB_2007-2007_1; Arctic_SEB_2007-2008_1; Arctic_SEB_2007-2009_1; Arctic_SEB_2007-2009_2; Arctic_SEB_2007-2010_1; Arctic_SEB_2007-2014_1; Arctic_SEB_2007-2015_1; Arctic_SEB_2007-2015_2; Arctic_SEB_2008-2008_1; Arctic_SEB_2008-2008_2; Arctic_SEB_2008-2008_3; Arctic_SEB_2008-2009_1; Arctic_SEB_2008-2010_1; Arctic_SEB_2008-2010_2; Arctic_SEB_2008-2010_3; Arctic_SEB_2008-2011_1; Arctic_SEB_2008-2012_1; Arctic_SEB_2008-2012_2; Arctic_SEB_2008-2012_3; Arctic_SEB_2009-2012_1; Arctic_SEB_2009-2012_2; Arctic_SEB_2009-2012_3; Arctic_SEB_2009-2012_4; Arctic_SEB_2009-2012_5; Arctic_SEB_2009-2014_1; Arctic_SEB_2009-2014_2; Arctic_SEB_2010-2014_1; Arctic_SEB_2010-2014_2; Arctic_SEB_2010-2014_3; Arctic_SEB_2010-2014_4; Arctic_SEB_2010-2014_5; Arctic_SEB_2011-2011_1; Arctic_SEB_2011-2013_1; Arctic_SEB_2011-2014_1; Arctic_SEB_2012-2012_1; Arctic_SEB_2012-2013_1; Arctic_SEB_2012-2013_2; Arctic_SEB_2012-2013_3; Arctic_SEB_2012-2013_4; Arctic_SEB_2012-2014_1; Arctic_SEB_2012-2015_1; Arctic_SEB_2012-2015_2; Arctic_SEB_2012-2015_3; Arctic_SEB_2012-2015_4; Arctic_SEB_2012-2015_5; Arctic_SEB_2013-2013_1; Arctic_SEB_2013-2014_1; Arctic_SEB_2013-2015_1; Arctic_SEB_2013-2015_2; Arctic_SEB_2013-2015_3; Arctic_SEB_2014-2014_1; Arctic_SEB_2014-2015_1; Arctic_SEB_2014-2016_1; Arctic_SEB_2015-2015_1; Arctic_SEB_2015-2015_2; Arctic_SEB_2015-2015_3; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Classification; Comment; Data collection methodology; Data type; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Energy budget, description; Event label; Field observation; First year of observation; glacier; glaciers; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Identification; Journal/report title; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location; LONGITUDE; longwave radiation; meteorological data; observatory data; Peat bog; Persistent Identifier; Publication type; Radiation fluxes; Radiative energy budget; Resolution; Season; sensible heat flux; shortwave radiation; shrub tundra; Spatial coverage; surface energy balance; synthetic data; Title; tundra vegetation; Type of study; Variable; Vegetation type; wetland; wetlands; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 8650 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-20
    Description: Eddy-covariance observations taken over rough ice and snow surfaces on the Greenland Ice Sheet and on the Vatnajökull ice cap in Iceland between 1996 and 2021. This data contains corrected 30-min averages, variances and covariances of wind components and temperature, as well as estimated near-surface turbulent heat fluxes, roughness lengths, and other meteorological parameters measured by an adjacent automatic weather station. See README.txt for more detailed information.
    Keywords: Ablation
/Accumulation; Binary Object; Binary Object (File Size); Eddy-Covariance; Event label; Greenland; Greenland ice sheet; GRL_QASL; GRL_S10; GRL_S5; GRL_S6; GRL_SHR; Iceland; ISL_A4; ISL_A5; Location; roughness length; turbulent fluxes; Type; Weather station/meteorological observation; WST; Years
    Type: Dataset
    Format: text/tab-separated-values, 56 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-22
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the environmental conditions for 64 tundra and glacier sites (〉=60°N latitude) across the Arctic, for which in situ measurements of surface energy budget components were harmonized (see Oehri et al. 2022). These environmental conditions are (proxies of) potential drivers of SEB-components and could therefore be called SEB-drivers. The associated environmental conditions, include the vegetation types graminoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra, wetland complexes, barren complexes (≤ 40% horizontal plant cover), boreal peat bogs and glacier. These land surface types (apart from boreal peat bogs) correspond to the main classification units of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). For each site, additional climatic and biophysical variables are available, including cloud cover, snow cover duration, permafrost characteristics, climatic conditions and topographic conditions.
    Keywords: Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Aspect; Aspect, coefficient of variation; Calculated average/mean values; Cloud cover; Cloud cover, standard deviation; Cloud top pressure; Cloud top pressure, standard deviation; Cloud top temperature; Cloud top temperature, standard deviation; Conrad's continentality index; Daily maximum; Daily mean; Data source; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Elevation, standard deviation; Event label; Field observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Humidity, relative; Land-Atmosphere; Land-cover; Land cover classes; Land cover type; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; Mean values; Median values; meteorological data; Number of vegetation types; observatory data; Peat bog; Permafrost, type; Permafrost extent; Permafrost ice content, description; Precipitation; Precipitation, coefficient of variation; Precipitation, daily, maximum; Precipitation, snow; Precipitation, sum; Pressure, atmospheric; p-value; Radiation fluxes; Radiative energy budget; Reference/source; sensible heat flux; Shannon Diversity Index; Shannon Diversity Index, maximum; shortwave radiation; shrub tundra; Site; Slope; Slope, coefficient of variation; Slope, mathematical; Snow, onset, day of the year; Snow cover, number of days; Snowfall, coefficient of variation; Snow-free days; Snow type; Soil water content, volumetric; Species present; Summer warmth index; surface energy balance; synthetic data; Temperature, air, annual mean; Temperature, air, coefficient of variation; Temperature, annual mean range; tundra vegetation; Type of study; Uniform resource locator/link to reference; Vapour pressure deficit; Vegetation type; wetland; Wind speed; Zone
    Type: Dataset
    Format: text/tab-separated-values, 4705 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2016-05-16
    Description: We present in situ firn temperatures from the extreme 2012 melt season in the southwestern lower accumulation area of the Greenland ice sheet. The upper 2.5 m of snow and firn was temperate during the melt season, when vertical meltwater percolation was inefficient due to a ~5.5 m thick ice layer underlying the temperate firn. Meltwater percolation and refreezing beneath 2.5 m depth only occurred after the melt season. Deviations from temperatures predicted by pure conductivity suggest that meltwater refroze in discrete bands at depths of 2.0–2.5, 5.0–6.0 and 8.0–9.0 m. While we find no indication of meltwater percolation below 9 m depth or complete filling of pore volume above, firn at 10 and 15 m depth was respectively 4.2–4.5°C and 1.7°C higher than in a conductivity-only simulation. Even though meltwater percolation in 2012 was inefficient, firn between 2 and 15 m depth the following winter was on average 4.7°C warmer due to meltwater refreezing. Our observations also suggest that the 2012 firn conditions were preconditioned by two warm summers and ice layer formation in 2010 and 2011. Overall, firn temperatures during the years 2009–13 increased by 0.6°C.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-29
    Description: Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of ~3000 measurements from 46 sites, and is openly accessible through the PROMICE web portal (http://www.promice.dk). For each measurement we provideX, YandZcoordinates, starting and ending dates as well as quality flags. We give sources for each entry and for all metadata. Two thirds of the data were collected from grey literature and unpublished archive documents. Roughly 60% of the measurements were performed by the Geological Survey of Denmark and Greenland (GEUS, previously GGU). The data cover all regions of Greenland except for the southernmost part of the east coast, but also emphasize the importance of long-term time series of which there are only two exceeding 20 a. We use the data to analyse uncertainties in point measurements of surface mass balance, as well as to estimate surface mass-balance profiles for most regions of Greenland.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...