ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 31 (1976), S. 417-432 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Inorganic and Nuclear Chemistry 27 (1965), S. 967-973 
    ISSN: 0022-1902
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Physics 69 (1965), S. 625-636 
    ISSN: 0029-5582
    Keywords: Nuclear Reactions ^5^6Fe(α, xpyn)^5^5^,^5^6^,^5^7^,^5^8Co, ^5^6^,^5^7Ni, ; measured σ(E), recoil range, Enriched target
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Physics 72 (1965), S. 577-592 
    ISSN: 0029-5582
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Miocene-Oligocene volcanism of this region is part of the larger Tertiary volcanic province found throughout E. Australia. Within the S.E. Queensland region, the volcanism is strongly bimodal, and has emanated from six major centres, and many additional smaller centres. The mafic lavas (volumetrically dominant) range continuously from ne-normative through to Q-normative and are predominantly andesine-normative; Mg/Mg+∑Fe (atomic ratios range from 30–60; K2O ranges from 0.42–2.93%, and TiO2 from 0.81–3.6%. Phenocryst contents are low (averaging 6.7 vol.%), and comprise olivine (Fa18–75; Cr-spinel inclusions occur locally in Mg-rich phenocrysts), plagioclase (An25–68), and less commonly augite, which is relatively aluminous in lavas of the Springsure volcanic centre. Very rare aluminous bronzite occurs in certain Q-normative lavas. Groundmass minerals comprise augite, olivine (Fa33–77), feldspar (ranging from labradorite through to anorthoclase and sanidine), Fe-Ti oxides, and apatite. Within many of the Q-normative lavas, extensive development of subcalcic and pigeonitic pyroxenes occurs, and also relatively rarely orthopyroxene. Mineralogically, the ne- and ol-normative lavas, and some of the Q-normative lavas are indistinguishable, and in view of the gradations in chemistry, the term hawaiite has been extended to cover these lavas. The term tholeiitic andesite is used to describe the Q-normative lavas containing Ca-poor pyroxenes as groundmass phases. Megacrysts of aluminous augite, aluminous bronzite, olivine, ilmenite, and spinel sporadically occur within the lavas, and their compositions clearly indicate that they are not derived from the Upper Mantle. Rare lherzolite xenoliths are also found. The petrogenesis of these mafic lavas is approached by application of the thermodynamic equilibration technique of Carmichael et al. (1977), utilizing three “parental” mineral assemblages that could have been in equilibrium with the magmas at P and T. The models are: (a) “standard” upper mantle mineralogy; (b) an Fe-enriched upper mantle model (Wilkinson and Binns 1977); (c) “lower crust” mineralogy, based on analysed megacryst compositions. The calculations suggest that these mafic magmas were not in equilibrium with either mantle model prior to eruption, but show much closer approaches to equilibrium with the “lower crust” model. Calculated equilibration temperatures and pressures (for the “lower crust” model) range from 995°–l,391° C (average 1,192), and 7.2–16.3 kb (average 12.4). These results are interpreted in terms of a model of intrusion and magma fractionation within the crust-mantle interface region, with consequent crustal underplating and thickening beneath the Tertiary volcanic regions. Some support for the latter is provided by regional isostatic gravity anomalies and physiographic considerations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 58 (1976), S. 1-21 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites. Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (〈 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 287 (1980), S. 471-472 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IN 1950 the late R. W. Willett, then Director of the New Zealand Geological Survey, instigated an ambitious 1:250,000 mapping programme of New Zealand. Completed in 1968, the programme provided both stimulus and unity to geological research in New Zealand. Only now, 15 years after the huge task of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 54 (1992), S. 200-219 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Etendeka Formation of north-western Namibia consists of a sequence of interbedded quartz latites and tholeiitic basalts and forms part of the Karoo Igneous Province in southern Africa. The age of the Etendeka Formation is approximately 130–135 Ma. The quartz latites make up a significant proportion of the stratigraphic succession (〈25% of the total stratigraphic thickness) and form as much as 60% of the outcrop area in the southern Etendeka. Apart from some systematic differences between pitchstones and devitrified quartz latite, largely explained by alteration processes, individual quartz latite units exhibit remarkably uniform compositions with no significant vertical or lateral variation. Geochemistry can be used as a primary criterion for the correlation of major quartz latite units over much of the southern Etendeka area enabling the reconstruction of the Etendeka Formation stratigraphy in this region. Individual quartz latite units occur as voluminous (400–2600 km3), widespread (up to 8800 km2), sheet-like deposits typically between 40 and 300 m thick. Each unit consists of basal, main and upper zones. The main zone generally constitutes over 70% of the thickness of the unit and typically consists of texturally featureless devitrified quartz latite. In contrast the basal and upper zones of the flow are characterised by flow banding, pitchstone lenses and breccia, with rare occurrences of pyroclastic textures. The quartz latites are sparsely porphyritic (〈10% phenocrysts) with glassy or devitrified groundmass textures. The phenocrysts consist of plagioclase, pyroxene, titanomagnetite and rare ilmenite. Pyroxene geothermometry indicates high (1000–1100°C) temperatures of crystallisation which, coupled with the absence or primary hydrous phases, indicates that the quartz latites were relatively hot, H2O-undersaturated magmas. The quartz latites display features common to both rhyolite lavas and ignimbrites and are clearly the products of an unusual eruption style. The local preservation of pyroclastic textures and the broad areal extent of these units lead to the conclusion that the quartz latites are high-temperature rheomorphic ignimbrites (i.e. rheoignimbrites). A combination of high eruption temperature and relatively low viscosity helps to explain the often completely welded and homogeneous textures observed in most quartz latite outcrops in the Etendeka area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 17 (1968), S. 116-140 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Recent pantelleritic lavas comprise the whole of the isolated and outlying volcano of Mayor Island. Mineralogically, they are characterised by phenocrystic anorthoclase-sodic27 sanidine, quartz, sodic ferrohedenbergite, and cossyrite. Nine new chemical analyses of the lavas are presented (including one residual glass), confirming their strongly sodic and peralkaline nature. One analysis is also given of trachybasalt, which occurs as common inclusions in the mantling pumice deposits. These inclusions are characterised by abundant feldspar phenocrysts. Detailed trace element data is presented for five of the lava samples, representing the mam volcanic phases and the trachybasalt inclusions. The following conclusions are presented: a) The lavas exhibit a marked enrichment (relative to “average” granitic compositions) of the alkalis; rare earths; highly charged cations (e.g. Nb, Zr, Hf, Mo, U, Th); Ga, Be, and Cl. In contrast, they show a spectacular depletion of Sr, Ba, and Mg, and a less intense depletion of Ca, Sc, V, and Cr. b) The pantelleritic rare earth patterns show a similar degree of fractionation to the sedimentary pattern, and are dominated by a very strong Eu depletion. This suggests feldspar subtraction. The trachybasalt pattern shows a similar degree of fractionation, but exhibits enrichment of Eu. c) The trachybasalt inclusions are characterised by a trace element assemblage comparable to alkali basalts, except for higher Ba and exceedingly high K/Rb and K/Cs ratios. The chemical and mineralogical data suggest that they represent partial feldspar accumulate rocks. d) There is a progressive enrichment of nearly all trace and minor elements in the youngest lavas. This includes those elements that show an overall depletion in the lavas. The younger lavas are also enriched in Na and Fe, but further depleted in Al. The data is interpreted to indicate that the pantellerites were derived by crystal differentiation from a postulated mildly alkali olivine basalt parent — feldspar fractionation is considered to have been extremely important in this process. It is shown that the element enrichment occurring in the younger lavas may not be wholely explained by crystallisation differentiation alone — it is possible that some additional process is required. It is also shown that the observed enrichment of sodium in the youngest lavas can only occur during crystal fractionation if quartz, as well as anorthoclase, separate from the magma. This is due to the higher alkali abundances of the anorthoclase phenocrysts, relative to the pantellerite compositions. There is limited evidence that post-eruptive devitrification of some of the lavas has resulted in some modification of the lava chemistry, notably sodium loss.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 51 (1975), S. 1-27 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The voluminous Pleistocene—Recent Taupo rhyolites typically contain phenocrysts of plagioclase (oligoclase-labradorite), quartz, titanomagnetite, ilmenite, and ferromagnesian silicates. Ferromagnesian assemblages correlate with well defined Fe-Ti oxide equilibration temperature ranges and allow the rhyolites to be subdivided as follows: (1) Cummingtonite (c)—calcic hornblende (hb)—orthopyroxene (opx); 725–755°C, (2) Hb-opx, 750–825°C, (3) Biotite-hb-(c-opx), 720–765°C, (4) Opx-clinopyroxene (cpx), 860–915°C, (5) Fe olivine-opx-cpx, one sample with temperature of 900°C. Plagioclase and orthopyroxene phenocryst compositions typically exhibit a range of composition up to ∼20 mol.%. Calculated average phenocryst equilibration pressures (P total) range between 0.5–4.9 kb, and average 2.2 kb (∼7–8 km depth), indicating upper crustal crystallization. These calculations are very sensitive to variations in phenocryst composition. Calculated $$/_{{\text{H}}_2 {\text{O}}} $$ for the amphibole and biotite-bearing rhyolites indicate phenocryst equilibration under $$P_{{\text{H}}_2 {\text{O}}} \simeq P_{{\text{total}}} $$ , with $$X_{{\text{H}}_2 {\text{O}}} $$ ∼0.17–0.24 (5–8 wt. %). The precipitation of cummingtonite is thus temperature dependent, the upper limit being close to 760°C. Eruptive mechanisms of the lavas, pumices, and ash-flow deposits are evidently not primarily controlled by temperature, P total, $$P_{{\text{H}}_2 {\text{O}}} $$ , or crystal content of the magmas, and explanations must lie in kinetic and fluid dynamic behavior of the magmas. For the Taupo rhyolites, it is suggested that the critical size of a magma body (i.e. Rayleigh number) is a controlling factor in that it will influence the convective regime; fully turbulent convection is deduced to have occurred within the larger magma bodies. One consequence is intense vesiculation, prior to eruption, within the uppermost zones of these magma chambers, and the voluminous pumice deposits are believed to emanate from such chambers. Oscillatory compositional zoning within pyroxene phenocrysts is consistent with magma convection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...