ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-11-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-06-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1971-11-01
    Print ISSN: 0006-2960
    Electronic ISSN: 1520-4995
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed.
    Keywords: Life Sciences (General)
    Type: Radiation research (ISSN 0033-7587); Volume 151; 4; 391-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.
    Keywords: Life Sciences (General)
    Type: Mutation research (ISSN 0027-5107); Volume 437; 2; 135-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.
    Keywords: Life Sciences (General)
    Type: Radiation research (ISSN 0033-7587); 156; 3; 259-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.
    Keywords: Life Sciences (General)
    Type: Cancer genetics and cytogenetics (ISSN 0165-4608); 129; 2; 124-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.
    Keywords: Life Sciences (General)
    Type: Radiation research (ISSN 0033-7587); 158; 1; 110-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.
    Keywords: Life Sciences (General)
    Type: Genes, chromosomes & cancer (ISSN 1045-2257); 30; 3; 236-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.
    Keywords: Aerospace Medicine
    Type: Radiation research (ISSN 0033-7587); 156; 2; 186-94
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...