ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9/M 07.0421(323)
    In: Geological Society special publication
    Type of Medium: Monograph available for loan
    Pages: 362 S.
    ISBN: 9781862392830
    Series Statement: Geological Society special publication 323
    Classification:
    Historical Geology
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 444 (2006), S. 51-55 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Terra nova 14 (2002), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Although geological comparisons between Australia and North America have provided a basis for various Neoproterozoic Rodinia reconstructions, quantitative support from precisely dated palaeomagnetic poles has so far been lacking. We report U–Pb ages and palaeomagnetic results for two suites of mafic sills within the intracratonic Bangemall Basin of Western Australia, one of which is dated at 1070 ± 6 Ma and carries a high-stability palaeomagnetic remanence. Comparison of the Bangemall palaeopole with Laurentian data suggests that previous reconstructions of eastern Australia against either western Canada (SWEAT) or the western United States (AUSWUS) are not viable at 1070 Ma. This implies that the Pacific Ocean did not form by separation of Australia–Antarctica from Laurentia, and that up to 10 000 km of late Neoproterozoic passive margins need to be matched with other continental blocks within any proposed Rodinia supercontinent. Our results permit a reconstruction (AUSMEX) that closely aligns late Mesoproterozoic orogenic belts in north-east Australia and southernmost Laurentia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-09-08
    Description: The IGCP 509 project is collating global information for the Palaeoproterozoic era through the activities of numerous international collaborators. A database system (StratDB) and web interface has been designed to facilitate this process with links to an existing geochronology database (DateView). As a result, all information captured will remain available in a digital format for future researchers. The philosophy and design of the database and some of the outputs available from it are described. One of the principal features of the system is that it facilitates the construction of time-space correlation charts using an innovative application of GIS technology to non-geographic information, which permits users to query a variety of attribute information associated with lithostratigraphic units, metamorphic and deformation episodes associated with user-selected tectonic domains, large igneous provinces and major ore deposits. In the process, much of the manual labour normally associated with the construction of such charts in standard graphical or drafting packages is avoided. Associations between units, deformation, metamorphism, large igneous provinces and ore deposits may become more apparent once linked information is available for querying and investigation. Geochronological information from the DateView database may also be linked to entities stored in StratDB. GIS maps may be linked to the attribute information in StratDB and DateView to construct a variety of time-slice maps or palaeogeographic reconstructions with the same symbology as is used in the time-space correlation charts. This database system will facilitate the dissemination of lithostratigraphic information for many countries to a broader community and will help non-specialists to easily view information for various Palaeoproterozoic tectonic domains. The system is illustrated using a preliminary compilation of information for the Palaeoproterozoic of southern Africa. The correlation charts and time-slice maps provide insights to the geological evolution of this region which emphasize some aspects and correlations which have not previously been extensively considered; for instance, possible correlation of units in the central and western zones of the Limpopo Belt (South Africa, Zimbabwe and Botswana) with the Magondi Belt of Zimbabwe and its extension into northern Botswana.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-08
    Description: Continental lithosphere formed and reworked during the Palaeoproterozoic era is a major component of pre-1070 Ma Australia and the East Antarctic Shield. Within this lithosphere, the Mawson Continent encompasses the Gawler-Adelie Craton in southern Australia and Antarctica, and crust of the Miller Range, Transantarctic Mountains, which are interpreted to have assembled during c. 1730-1690 Ma tectonism of the Kimban-Nimrod-Strangways orogenies. Recent geochronology has strengthened correlations between the Mawson Continent and Shackleton Range (Antarctica), but the potential for Meso- to Neoproterozoic rifting and/or accretion events prevent any confident extension of the Mawson Continent to include the Shackleton Range. Proposed later addition (c. 1600-1550 Ma) of the Coompana Block and its Antarctic extension provides the final component of the Mawson Continent. A new model proposed for the late Archaean to early Mesoproterozoic evolution of the Mawson Continent highlights important timelines in the tectonic evolution of the Australian lithosphere. The Gawler-Adelie Craton and adjacent Curnamona Province are interpreted to share correlatable timelines with the North Australian Craton at c. 2500-2430 Ma, c. 2000 Ma, 1865-1850 Ma, 1730-1690 Ma and 1600-1550 Ma. These common timelines are used to suggest the Gawler-Adelie Craton and North Australian Craton formed a contiguous continental terrain during the entirety of the Palaeoproterozoic. Revised palaeomagnetic constraints for global correlation of proto-Australia highlight an apparently static relationship with northwestern Laurentia during the c. 1730-1590 Ma time period. These data have important implications for many previously proposed reconstruction models and are used as a primary constraint in the configuration of the reconstruction model proposed herein. This palaeomagnetic link strengthens previous correlations between the Wernecke region of northwestern Laurentia and terrains in the eastern margin of proto-Australia.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 327: 371-404.
    Publication Date: 2009-12-22
    Description: Palaeomagnetic apparent polar wander (APW) paths from the world's cratons at 1300-700 Ma can constrain the palaeogeographic possibilities for a long-lived and all-inclusive Rodinia supercontinent. Laurentia's APW path is the most complete and forms the basis for superposition by other cratons' APW paths to identify possible durations of those cratons' inclusion in Rodinia, and also to generate reconstructions that are constrained both in latitude and longitude relative to Laurentia. Baltica reconstructs adjacent to the SE margin of Greenland, in a standard and geographically upright' position, between c. 1050 and 600 Ma. Australia reconstructs adjacent to the pre-Caspian margin of Baltica, geographically inverted' such that cratonic portions of Queensland are juxtaposed with that margin via collision at c. 1100 Ma. Arctic North America reconstructs opposite to the CONgo+Sao Francisco craton at its DAmaride-Lufilian margin (the ANACONDA' fit) throughout the interval 1235-755 Ma according to palaeomagnetic poles of those ages from both cratons, and the reconstruction was probably established during the c. 1600-1500 Ma collision. Kalahari lies adjacent to Mawsonland following collision at c. 1200 Ma; the Albany-Fraser orogen continues along-strike to the Sinclair-Kwando-Choma-Kaloma belt of south-central Africa. India, South China and Tarim are in proximity to Western Australia as previously proposed; some of these connections are as old as Palaeoproterozoic whereas others were established at c. 1000 Ma. Siberia contains a succession of mainly sedimentary-derived palaeomagnetic poles with poor age constraints; superposition with the Keweenawan track of the Laurentian APW path produces a position adjacent to western India that could have persisted from Palaeoproterozoic time, along with North China according to its even more poorly dated palaeomagnetic poles. The Amazonia, West Africa and Rio de la Plata cratons are not well constrained by palaeomagnetic data, but they are placed in proximity to western Laurentia. Rift successions of c. 700 Ma in the North American COrdillera and BRAsiliano-Pharuside orogens indicate breakup of these COBRA' connections that existed for more than one billion years, following Palaeoproterozoic accretionary assembly. The late Neoproterozoic transition from Rodinia to Gondwanaland involved rifting events that are recorded on many cratons through the interval c. 800-700 Ma and collisions from c. 650-500 Ma. The pattern of supercontinental transition involved large-scale dextral motion by West Africa and Amazonia, and sinistral motion plus rotation by Kalahari, Australia, India and South China, in a combination of introverted and extroverted styles of motion. The Rodinia model presented here is a marked departure from standard models, which have accommodated recent discordant palaeomagnetic data either by excluding cratons from Rodinia altogether, or by decreasing duration of the supercontinental assembly. I propose that the revised model herein is the only possible long-lived solution to an all-encompassing Rodinia that viably accords with existing palaeomagnetic data.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-01-01
    Description: Amongst existing palaeogeographic models of the Rodinia supercontinent, or portions thereof, arguments have focused upon geological relations or palaeomagnetic results, but rarely both. A new model of Rodinia is proposed, integrating the most recent palaeomagnetic data with current stratigraphic, geochronological and tectonic constraints from around the world. This new model differs from its predecessors in five major aspects: cratonic Australia is positioned in the recently proposed AUSMEX fit against Laurentia; East Gondwanaland is divided among several blocks; the Congo-Sao Francisco and India-Rayner Cratons are positioned independently from Rodinia; Siberia is reconstructed against northern Laurentia, although in a different position than in all previous models; and Kalahari-Dronning Maud Land is connected with Western Australia. The proposed Rodinia palaeogeography is meant to serve as a working hypothesis for future refinements.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 206: 77-91.
    Publication Date: 2003-01-01
    Description: Recent plate tectonic models advocate assembly of Proterozoic Australia by tectonic processes that involved large-scale horizontal motions, whereas previous models suggested that the continent evolved as an essentially intact block of lithosphere. Geological and geochemical observations alone are insufficient to test whether the major cratonic blocks of Australia were together or widely separated during the Proterozoic; only palaeomagnetism can provide quantitative constraints on relative plate motions during the Precambrian. Despite deficiencies in the palaeomagnetic record for Proterozoic Australia, groups of overlapping palaeopoles for 1.7-1.8 and 1.5-1.6 Ga permit the North and West Australian cratonic assemblages to have occupied their present relative positions since at least c. 1.7Ga, and to have been joined to the South Australian cratonic assemblage since at least c. 1.5Ga. Nonetheless, additional geological, geochronological and palaeomagnetic data are required to test whether large oceans closed between any of the continental blocks.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-10-01
    Description: Hotspot tracks represent plate motions relative to mantle sources, and paleomagnetic data from magmatic units along those tracks can quantify motions of those mantle anomalies relative to the Earth's magnetic field and rotational axis. The Ediacaran Period is notable for rapid and large paleomagnetic apparent polar wander (APW) for many continents. Whereas magmatic units attributed to the “Sutton” mantle plume suggest a practically stationary hotspot track, paleolatitudes of Laurentia for that interval vary dramatically; geologic and paleomagnetic data are at odds unless true polar wander (TPW) is invoked to explain a majority of APW. Here we test the plume-TPW hypothesis by generating the predicted Sutton hotspot track for a stationary plume under a moving plate along the Laurentian margin during the interval from 615 to 530 Ma. Our model is the first to provide a kinematic framework for the extensive large igneous province associated with opening the Iapetus Ocean.
    Print ISSN: 0002-9599
    Electronic ISSN: 1945-452X
    Topics: Geosciences
    Published by HighWire Press on behalf of The American Journal of Science.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-01
    Description: We analyzed paleomagnetic samples and documented the stratigraphy from two sections near Miles City, Montana to determine the geomagnetic polarity stratigraphy and to constrain the age and duration of the Lebo and Tongue River Members of the Fort Union Formation in the northeastern Powder River Basin. The resulting polarity sequence can be correlated to subchrons C29n–C26r of the geomagnetic polarity time scale. By interpolating measured sediment accumulation rates from the base of C28r to the top of C27n, and then extrapolating to the top of the Tongue River Member and the bottom of the Lebo Member, we developed two age models to estimate the durations of the Lebo and Tongue River Members. Based on the first model, which uses different sedimentation rates for the Lebo and Tongue River Members, we estimate the duration of deposition of the Lebo to be between 1.30 and 1.74 million years and of the Tongue River to be between 1.42 and 1.61 million years. Using the second model, which uses the same sedimentation rate for the Lebo and Tongue River Members, we estimate the duration of deposition of the Lebo to be between 1.33 and 1.76 million years and of the Tongue River to be between 1.00 and 1.25 million years. Our results indicate a decrease in sediment accumulation rates in C27r, which is likely the result of a 0.26 to 0.62 million-year long depositional hiatus in the middle of C27r, represented by the Lebo–Tongue River contact. This unconformity occurs ~2 million years earlier than previously suggested and is likely contemporaneous with unconformities in the Williston Basin and in southwestern Alberta, suggesting that it may be regionally significant.
    Print ISSN: 0002-9599
    Electronic ISSN: 1945-452X
    Topics: Geosciences
    Published by HighWire Press on behalf of The American Journal of Science.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...