ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 94.0168 ; 11/M 91.0707
    In: Reviews in mineralogy
    Description / Table of Contents: When Van't Hoff calculated the effect of solution composition on the gypsum-anhydrite transition a century ago, he solved a significant geochemical problem (Hardie, 1967). Other well known examples of the early use of chemical thermodynamics in geology are Bowen's calculations of the plagioclase melting loop and the diopside-anorthite eutectic (Bowen, 1913, 1928). Except for a few specialists, however, these techniques were largely ignored by earth scientists during the first half of the 20th century. The situation changed dramatically by the 1950's when more and better thermodynamic data on geologic materials became available, and when thermodynamic arguments of increasing sophistication began to permeate the petrologic and geochemical literature. This rejuvenation was spearheaded by D.S. Korzhinskii, H. Ramberg, J.B. Thompson, J. Verhoogen and others. Today a graduating petrologist or geochemist can be expected to have a thorough grounding in geological thermodynamics. Rapid intellectual growth in a field brings with it the difficulty of keeping abreast of parallel and diverging specialties. In order to alleviate this problem, we asked a group of active researchers to contribute up-to-date summaries relating to their specialties in the thermodynamic modeling of geological materials, in particular minerals, fluids and melts. Whereas each of these topics could fill a book, by covering the whole range we hope to emphasize similarities as much as differences in the treatment of various materials. For instance, there are useful parallels to be noted between Margules parameters and Pitzer coefficients. The emphasis here is on modeling, after the required data have been collected, and the approach ranges form theoretical to empirical. We deliberately imposed few restrictions on the authors. Some chose to interpret modeling in the rigorous thermodynamic sense, while others approached their topics from more general geochemical viewpoints. We hope that any lack of unity and balance is compensated for by a collection of lively and idiosyncratic essays in which students and professionals will find new ideas and helpful hints. If the selection appears tilted towards fluids, it is because other recent summaries have emphasized minerals and melts. The editors and authors of this volume presented a short course, entitled "Thermodynamic Modeling of Geological Materials: Minerals, Fluids amd Melts," October 22-25, 1987, at the Wickenburg Inn near Phoenix, Arizona.
    Type of Medium: Monograph available for loan
    Pages: xiii, 499 S.
    ISBN: 0-939950-21-9 , 978-0-939950-21-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 17
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Thermodynamic Analysis of Phase Equilibria in Simple Mineral Systems by Robert C. Newton, p. 1 - 34 Chapter 2. Models of Crystalline solutions by Alexandra Navrotsky, p. 35 - 70 Chapter 3. Thermodynamics of Multicomponent Systems Containing Several Solid Solutions by Bernard J. Wood, p. 71 - 96 Chapter 4. Thermodynamic Model for Aqueous Solutions of Liquid-like Density by Kenneth S. Pitzer, p. 97 - 142 Chapter 5. Models of Mineral Solubility in Concentrated Brines with Application to Field Observations by John H. Weare, p. 143 - 176 Chapter 6. Calculation of the Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals in Supercritical Electrolyte Solutions by Dimitri A. Sverjensky, p. 177 - 210 Chapter 7. Igneous Fluids by John R. Holloway, p. 211 - 234 Chapter 8. Ore Fluids: Magmatic to Supergene by George H. Brimhall and David A. Crerar, p. 235 - 322 Chapter 9. Thermodynamic Models of Molecular Fluids at the Elevated Pressures and Temperatures of Crustal Metamorphism by John M. Ferry and Lukas Baumgartner, p. 323 - 366 Chapter 10. Mineral Solubilities and Speciation in Supercritical Metamorphic Fluids by Hans P. Eugster and Lukas Baumgartner, p. 367 - 404 Chapter 11. Development of Models for Multicomponent Melts: Analysis of Synthetic Systems by Rober G. Berman and Thomas H. Brown, p. 405 - 442 Chapter 12. Modeling Magmatic Systems: Thermodynamic Relations by Mark S. Ghiorso, p. 443 - 466 Chapter 13. Modeling Magmatic Systems: Petrologic Applications by Mark S. Ghiorso and Ian S.E. Carmichael, p. 467 - 500
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 93.0022/17
    In: Reviews in mineralogy
    Description / Table of Contents: When Van't Hoff calculated the effect of solution composition on the gypsum-anhydrite transition a century ago, he solved a significant geochemical problem (Hardie, 1967). Other well known examples of the early use of chemical thermodynamics in geology are Bowen's calculations of the plagioclase melting loop and the diopside-anorthite eutectic (Bowen, 1913, 1928). Except for a few specialists, however, these techniques were largely ignored by earth scientists during the first half of the 20th century. The situation changed dramatically by the 1950's when more and better thermodynamic data on geologic materials became available, and when thermodynamic arguments of increasing sophistication began to permeate the petrologic and geochemical literature. This rejuvenation was spearheaded by D.S. Korzhinskii, H. Ramberg, J.B. Thompson, J. Verhoogen and others. Today a graduating petrologist or geochemist can be expected to have a thorough grounding in geological thermodynamics. Rapid intellectual growth in a field brings with it the difficulty of keeping abreast of parallel and diverging specialties. In order to alleviate this problem, we asked a group of active researchers to contribute up-to-date summaries relating to their specialties in the thermodynamic modeling of geological materials, in particular minerals, fluids and melts. Whereas each of these topics could fill a book, by covering the whole range we hope to emphasize similarities as much as differences in the treatment of various materials. For instance, there are useful parallels to be noted between Margules parameters and Pitzer coefficients. The emphasis here is on modeling, after the required data have been collected, and the approach ranges form theoretical to empirical. We deliberately imposed few restrictions on the authors. Some chose to interpret modeling in the rigorous thermodynamic sense, while others approached their topics from more general geochemical viewpoints. We hope that any lack of unity and balance is compensated for by a collection of lively and idiosyncratic essays in which students and professionals will find new ideas and helpful hints. If the selection appears tilted towards fluids, it is because other recent summaries have emphasized minerals and melts. The editors and authors of this volume presented a short course, entitled "Thermodynamic Modeling of Geological Materials: Minerals, Fluids amd Melts," October 22-25, 1987, at the Wickenburg Inn near Phoenix, Arizona.
    Type of Medium: Monograph available for loan
    Pages: XIII, 499 S.
    ISBN: 0-939950-21-9 , 978-0-939950-21-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 17
    Language: English
    Note: Chapter 1. Thermodynamic Analysis of Phase Equilibria in Simple Mineral Systems by Robert C. Newton, p. 1 - 34 Chapter 2. Models of Crystalline solutions by Alexandra Navrotsky, p. 35 - 70 Chapter 3. Thermodynamics of Multicomponent Systems Containing Several Solid Solutions by Bernard J. Wood, p. 71 - 96 Chapter 4. Thermodynamic Model for Aqueous Solutions of Liquid-like Density by Kenneth S. Pitzer, p. 97 - 142 Chapter 5. Models of Mineral Solubility in Concentrated Brines with Application to Field Observations by John H. Weare, p. 143 - 176 Chapter 6. Calculation of the Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals in Supercritical Electrolyte Solutions by Dimitri A. Sverjensky, p. 177 - 210 Chapter 7. Igneous Fluids by John R. Holloway, p. 211 - 234 Chapter 8. Ore Fluids: Magmatic to Supergene by George H. Brimhall and David A. Crerar, p. 235 - 322 Chapter 9. Thermodynamic Models of Molecular Fluids at the Elevated Pressures and Temperatures of Crustal Metamorphism by John M. Ferry and Lukas Baumgartner, p. 323 - 366 Chapter 10. Mineral Solubilities and Speciation in Supercritical Metamorphic Fluids by Hans P. Eugster and Lukas Baumgartner, p. 367 - 404 Chapter 11. Development of Models for Multicomponent Melts: Analysis of Synthetic Systems by Rober G. Berman and Thomas H. Brown, p. 405 - 442 Chapter 12. Modeling Magmatic Systems: Thermodynamic Relations by Mark S. Ghiorso, p. 443 - 466 Chapter 13. Modeling Magmatic Systems: Petrologic Applications by Mark S. Ghiorso and Ian S.E. Carmichael, p. 467 - 500
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: MR 22.94898
    In: Special publication, 2
    Type of Medium: Monograph available for loan
    Pages: xix, 432 Seiten , Illustrationen
    ISBN: 0-9418-0901-3
    Series Statement: Special publication / The Geochemical Society No. 2
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1977-06-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1978-03-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1980-09-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1982-09-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-11-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1979-07-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-08-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...