ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 45 (1992), S. 339-348 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polymethyl methacrylate-phenoxy blends have been obtained in an injection machine at different injection temperatures in order to determine the possibility of direct blending in these processing machines and also the effect that different blending levels have in the mechanical properties of these miscible blends. High injection temperatures, but in the range used in production of the components, provided fairly well homogenized blends comparable both in transparency and mechanical properties to those obtained by kneading and subsequent compression molding. Very good mechanical properties, although less transparent, were obtained when processing at low injection temperatures.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1055-1062 
    ISSN: 0887-6266
    Keywords: polyoxymethylene ; phenoxy ; transitions ; miscibility ; mechanical properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Blends of polyoxymethylene (POM) and phenoxy were obtained by melt-blending to determine their phase behavior and to determine, among others, their dynamic and static mechanical properties. The dynamic mechanical spectrum of POM showed an unusually wide peak below the melting temperature that was attributed to amorphous POM close to, and hindered by, the predominant crystalline phase. The Tg of phenoxy was constant with composition, as was probably that of POM, proving their complete immiscibility. The overall mechanical properties of the blends, however, were those of a compatible blend. The synergism in ductility observed in POM-poor blends was partially attributed to their lesser crystalline character. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...