ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
  • 1
    Publication Date: 1998-05-01
    Print ISSN: 0043-1656
    Electronic ISSN: 1477-8696
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-08
    Description: We have performed future projections of the climate and surface mass balance (SMB) of Svalbard with the MAR regional climate model forced by the MIROC5 global model, following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of the melt around 2050, with a larger melt increase in the south compared to the north of the archipelago and the ice caps. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a strong winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. At the end of the century (2070–2099 mean), SMB is projected to be negative over the entire Svalbard and, by 2085, all glaciated regions of Svalbard are predicted to undergo net ablation, meaning that, under the RCP8.5 scenario, all the glaciers and ice caps are predicted to start their irreversible retreat before the end of the 21st century.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-08
    Description: With the help of the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-Interim reanalysis (MARERA) and the MIROC5 (Model for Interdisciplinary Research on Climate) global model (MARMIROC5) from the CMIP5 (Coupled Model Intercomparison Project) database, we have modelled the climate and surface mass balance of Svalbard at a 10 km resolution over 1979–2013. The integrated total surface mass balance (SMB) over Svalbard modelled by MARERA is negative (−1.6 Gt yr−1) with a large interannual variability (7.1 Gt) but, unlike over Greenland, there has been no acceleration of the surface melt over the past 35 years because of the recent change in atmospheric circulation bringing northwesterly flows in summer over Svalbard, contrasting the recent observed Arctic warming. However, in 2013, the atmospheric circulation changed to a south–southwesterly flow over Svalbard causing record melt, SMB (−20.4 Gt yr−1) and summer temperature. MIROC5 is significantly colder than ERA-Interim over 1980–2005 but MARMIROC5 is able to improve the near-surface MIROC5 results by simulating not significant SMB differences with MARERA over 1980–2005. On the other hand, MIROC5 does not represent the recent atmospheric circulation shift in summer and induces in MARMIROC5 a significant trend of decreasing SMB (−0.6 Gt yr−2) over 1980–2005.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-07
    Description: A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea, the Canadian Arctic Archipelago, and Greenland has been observed since the beginning of the 2000s, and particularly between 2007 and 2012. These circulation anomalies are likely partly responsible for the enhanced Greenland ice sheet melt as well as the Arctic sea ice loss observed since 2007. Therefore, it is interesting to analyse whether similar conditions might have happened since the late 19th century over the Arctic region. We have used an atmospheric circulation type classification based on daily mean sea level pressure and 500 hPa geopotential height data from five reanalysis data sets (ERA-Interim, ERA-40, NCEP/NCAR, ERA-20C, and 20CRv2) to put the recent circulation anomalies in perspective with the atmospheric circulation variability since 1871. We found that circulation conditions similar to 2007–2012 have occurred in the past, despite a higher uncertainty of the reconstructed circulation before 1940. For example, only ERA-20C shows circulation anomalies that could explain the 1920–1930 summertime Greenland warming, in contrast to 20CRv2. While the recent anomalies exceed by a factor of 2 the interannual variability of the atmospheric circulation of the Arctic region, their origin (natural variability or global warming) remains debatable.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-07
    Description: We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo–melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-20
    Description: During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-27
    Description: With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with decreasing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an "intelligent" interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-04
    Description: During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-04-09
    Description: Results from a regional climate simulation (1970–2006) over the Greenland ice sheet (GrIS) reveals that more than 97% of the interannual variability of the modelled Surface Mass Balance (SMB) can be explained by the GrIS summer temperature anomaly and the GrIS annual precipitation anomaly. This multiple regression is then used to empirically estimate the GrIS SMB since 1900 from climatological time series. The projected SMB changes in the 21st century are investigated with the set of simulations performed with atmosphere-ocean general circulation models (AOGCMs) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). These estimates show that the high surface mass loss rates of recent years are not unprecedented in the GrIS history of the last hundred years. The minimum SMB rate seems to have occurred earlier in the 1930s. The AOGCMs project that the SMB rate of the 1930s would be common at the end of 2100. The temperature would be higher than in the 1930s but the increase of accumulation in the 21st century would partly offset the acceleration of surface melt due to the temperature increase. However, these assumptions are based on an empirical multiple regression only validated for recent/current climatic conditions, and the accuracy and time homogeneity of the data sets and AOGCM results used in these estimations constitute a large uncertainty.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-10
    Description: A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea and Greenland has been observed from the beginning of the 2000's, and particularly between 2007 and 2012. These circulation anomalies are likely partly responsible for the enhanced Greenland ice sheet melt as well as the Arctic sea ice loss observed since 2007. Therefore, it is interesting to analyse whether similar conditions might have happened since the late 19th century over the Arctic region. We have used an atmospheric circulation type classification based on daily mean sea level pressure and 500 hPa geopotential height data from four reanalysis datasets (ERA-Interim, ERA-40, NCEP/NCAR, and 20CRv2) to put the recent circulation anomalies in perspective with the atmospheric circulation variability since 1871. We found that circulation conditions similar to 2007–2012 have occurred in the past, despite a higher uncertainty of the reconstructed circulation before 1940. But the recent anomalies largely exceed the interannual variability of the atmospheric circulation of the Arctic region. These circulation anomalies are linked with the North Atlantic Oscillation suggesting that they are not limited to the Arctic. Finally, they favour summertime Arctic sea ice loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...