ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 1995-05-01
    Print ISSN: 0012-1606
    Electronic ISSN: 1095-564X
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 165 (1980), S. 55-66 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: To examine the functional roles played by the lumbar spine during overground stepping, seven adult cats were run in electromyographic (EMG) experiments. Recordings were made bilaterally from mm. iliocostalis, longissimus dorsi and multifidus at a single vertebral level (L3) and from m. rectus abdominis. Stepping movements were monitored synchronously either by videotape or by high speed cinematography. During alternate use of the hindlimbs (walking and trotting), both epaxial and abdominal muscles were active bilaterally and biphasically. During in-phase use of the hindlimbs (galloping and half-bounding), single bursts of activity were observed. Phasic bursts of activity in rectus abdominus were reciprocal to those of epaxial muscles. Second bursts of activity in either group were noted infrequently. Recordings from the same back muscle at several vertebral levels indicated little difference from these patterns. Movements of the lumbar spine during galloping and half-bounding steps, both angular and linear, are easily correlated with muscle activity patterns. Movements of the lumbar spine during walking and trotting show no particular pattern. Only small angular and linear movements are found. It is concluded that the lumbar spine contributes substantially to step length and limb speed during galloping and half-bounding steps and the epaxial and abdominal musculature may also act as elastic bodies. During walking and trotting steps, the epaxial muscles are proposed to act to stabilize the pelvic girdle to provide a firm base for limb muscles which arise on the pelvis and are synchronously active.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...