ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-07
    Description: The Arctic is known to be particularly sensitive to climate change. This Arctic amplification has partially been attributed to poleward atmospheric heat transport in the form of airmass intrusions. Locally, such airmass intrusions can introduce moisture and temperature perturbations. The effect of airmass perturbations on boundary layer and cloud changes and their impact on the surface radiative balance has received increased attention, especially over sea ice with regard to sea ice melt. Utilizing cloud-resolving model simulations, this study addresses the impact of airmass perturbations occurring at different altitudes on stratocumulus clouds for open-ocean conditions. It is shown that warm and moist airmass perturbations substantially affect the boundary layer and cloud properties, even for the relatively moist environmental conditions over the open ocean. The cloud response is driven by temperature inversion adjustments and strongly depends on the perturbation height. Boundary layer perturbations weaken and raise the inversion, which destabilizes the lower troposphere and involves a transition from stratocumulus to cumulus clouds. In contrast, perturbations occurring in the lower free troposphere lead to a lowering but strengthening of the temperature inversion, with no impact on cloud fraction. In simulations where free-tropospheric specific humidity is further increased, multilayer mixed-phase clouds form. Regarding energy balance changes, substantial surface longwave cooling arises out of the stratocumulus break-up simulated for boundary layer perturbations. Meanwhile, the net surface longwave warming increases resulting from thicker clouds for airmass perturbations occurring in the lower free troposphere.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-08
    Description: We perform a model intercomparison of summertime high Arctic (〉 80∘ N) clouds observed during the 2008 Arctic Summer Cloud Ocean Study (ASCOS) campaign, when observed cloud condensation nuclei (CCN) concentrations fell below 1 cm−3. Previous analyses have suggested that at these low CCN concentrations the liquid water content (LWC) and radiative properties of the clouds are determined primarily by the CCN concentrations, conditions that have previously been referred to as the tenuous cloud regime. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). We test the sensitivities of the model results to different treatments of cloud droplet activation, including prescribed cloud droplet number concentrations (CDNCs) and diagnostic CCN activation based on either fixed aerosol concentrations or prognostic aerosol with in-cloud processing. There remains considerable diversity even in experiments with prescribed CDNCs and prescribed ice crystal number concentrations (ICNC). The sensitivity of mixed-phase Arctic cloud properties to changes in CDNC depends on the representation of the cloud droplet size distribution within each model, which impacts autoconversion rates. Our results therefore suggest that properly estimating aerosol–cloud interactions requires an appropriate treatment of the cloud droplet size distribution within models, as well as in situ observations of hydrometeor size distributions to constrain them. The results strongly support the hypothesis that the liquid water content of these clouds is CCN limited. For the observed meteorological conditions, the cloud generally did not collapse when the CCN concentration was held constant at the relatively high CCN concentrations measured during the cloudy period, but the cloud thins or collapses as the CCN concentration is reduced. The CCN concentration at which collapse occurs varies substantially between models. Only one model predicts complete dissipation of the cloud due to glaciation, and this occurs only for the largest prescribed ICNC tested in this study. Global and regional models with either prescribed CDNCs or prescribed aerosol concentrations would not reproduce these dissipation events. Additionally, future increases in Arctic aerosol concentrations would be expected to decrease the frequency of occurrence of such cloud dissipation events, with implications for the radiative balance at the surface. Our results also show that cooling of the sea-ice surface following cloud dissipation increases atmospheric stability near the surface, further suppressing cloud formation. Therefore, this suggests that linkages between aerosol and clouds, as well as linkages between clouds, surface temperatures, and atmospheric stability need to be considered for weather and climate predictions in this region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-02
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-02
    Description: The formation and persistence of low-lying mixed-phase clouds (MPCs) in the Arctic depends on a multitude of processes, such as surface conditions, the environmental state, air mass advection, and the ambient aerosol concentration. In this study, we focus on the relative importance of different instantaneous aerosol perturbations (cloud condensation nuclei and ice-nucleating particles; CCN and INPs, respectively) on MPC properties in the European Arctic. To address this topic, we performed high-resolution large-eddy simulation (LES) experiments using the Consortium for Small-scale Modeling (COSMO) model and designed a case study for the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign in March 2013. Motivated by ongoing sea ice retreat, we performed all sensitivity studies over open ocean and sea ice to investigate the effect of changing surface conditions. We find that surface conditions highly impact cloud dynamics, consistent with the ACCACIA observations: over sea ice, a rather homogeneous, optically thin, mixed-phase stratus cloud forms. In contrast, the MPC over the open ocean has a stratocumulus-like cloud structure. With cumuli feeding moisture into the stratus layer, the cloud over the open ocean features a higher liquid (LWP) and ice water path (IWP) and has a lifted cloud base and cloud top compared to the cloud over sea ice. Furthermore, we analyzed the aerosol impact on the sea ice and open ocean cloud regime. Perturbation aerosol concentrations relevant for CCN activation were increased to a range between 100 and 1000 cm−3 and ice-nucleating particle perturbations were increased by 100 % and 300 % compared to the background concentration (at every grid point and at all levels). The perturbations are prognostic to allow for fully interactive aerosol–cloud interactions. Perturbations in the INP concentration increase IWP and decrease LWP consistently in both regimes. The cloud microphysical response to potential CCN perturbations occurs faster in the stratocumulus regime over the ocean, where the increased moisture flux favors rapid cloud droplet formation and growth, leading to an increase in LWP following the aerosol injection. In addition, IWP increases through new ice crystal formation by increased immersion freezing, cloud top rise, and subsequent growth by deposition. Over sea ice, the maximum response in LWP and IWP is delayed and weakened compared to the response over the open ocean surface. Additionally, we find the long-term response to aerosol perturbations to be highly dependent on the cloud regime. Over the open ocean, LWP perturbations are efficiently buffered after 18 h simulation time. Increased ice and precipitation formation relax the LWP back to its unperturbed range. On the contrary, over sea ice the cloud evolution remains substantially perturbed with CCN perturbations ranging from 200 to 1000 CCN cm−3.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-11
    Description: We perform a model intercomparison of summertime high Arctic (〉 80 N) clouds observed during the 2008 Arctic Summer Cloud Ocean Study (ASCOS) campaign, when observed cloud condensation nuclei (CCN) concentrations fell below 1 cm−3. Previous analyses have suggested that at these low CCN concentrations the liquid water content (LWC) and radiative properties of the clouds are determined primarily by the CCN concentrations, conditions that have previously been referred to as the tenuous cloud regime. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). We test the sensitivities of the model results to different treatments of cloud droplet activation, including prescribed cloud droplet number concentrations (CDNC) and diagnostic CCN activation based on either fixed aerosol concentrations or prognostic aerosol with in-cloud processing. There remains considerable diversity even in experiments with prescribed CDNCs and prescribed ice crystal number concentrations (ICNC). The sensitivity of mixed-phase Arctic cloud properties to changes in CDNC depends on the representation of the cloud droplet size distribution within each model, which impacts on autoconversion rates. Our results therefore suggest that properly estimating aerosol–cloud interactions requires an appropriate treatment of the cloud droplet size distribution within models, as well as in-situ observations of hydrometeor size distributions to constrain them. The results strongly support the hypothesis that the liquid water content of these clouds is CCN-limited. For the observed meteorological conditions, the cloud generally did not collapse when the CCN concentration was held constant at the relatively high CCN concentrations measured during the cloudy period, but the cloud thins or collapses as the CCN concentration is reduced. The CCN concentration at which collapse occurs varies substantially between models. Only one model predicts complete dissipation of the cloud due to glaciation, and this occurs only for the largest prescribed ICNC tested in this study. Global and regional models with either prescribed CDNCs or prescribed aerosol concentrations would not reproduce these dissipation events. Additionally, future increases in Arctic aerosol concentrations would be expected to decrease the frequency of occurrence of such cloud dissipation events, with implications for the radiative balance at the surface. Our results also show that cooling of the sea-ice surface following cloud dissipation increases atmospheric stability near the surface, further suppressing cloud formation. Therefore, this suggests that linkages between aerosol and clouds, as well as linkages between clouds, surface temperatures and atmospheric stability need to be considered for weather and climate predictions in this region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-01
    Description: The formation and persistence of low lying mixed-phase clouds (MPCs) in the Arctic depends on a multitude of processes, such as surface conditions, the environmental state, air mass advection and the ambient aerosol concentration. In this study, we focus on the relative importance of different aerosol perturbations (cloud condensation nuclei and ice nucleating particles; CCN and INP, respectively) on MPC properties in the central Arctic. To address this topic, we performed high resolution large eddy simulations (LES) using the COSMO model and designed a case study for the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign in March 2013. Motivated by ongoing sea ice retreat, we additionally contrast the simulated MPC that formed over an open ocean surface and a sea ice surface. We find that surface conditions highly impact cloud dynamics: over sea ice, a rather homogeneous, optically thin, mixed-phase stratus cloud forms. In contrast, the MPC over the open ocean has a stratocumulus-like cloud structure. With cumuli feeding moisture into the stratus layer, the cloud features a higher liquid (LWC) and ice water content (IWC) and has a lifted cloud base compared to the cloud over sea ice. Furthermore, we analyzed the aerosol impact on these two dynamically different regimes. Perturbations in the INP concentration increase the IWC and decrease the LWC consistently in both regimes. The cloud microphysical response to potential CCN perturbations occurs faster in the stratocumulus regime over the ocean, where the increased moisture flux favors rapid cloud droplet formation and growth, leading to an increase in LWC following the aerosol injection. In addition, the IWC increases through increased immersion freezing and subsequent growth by deposition. Over sea ice, the maximum response is delayed by a factor of 2.5 compared to open ocean surface. However, independent of the cloud regime and aerosol perturbation, the cloud regains its original state after at most 12 h for an aerosol perturbation of 1000 cm−3. Cloud microphysical and macrophysical peoperties relax to their unperturbed range, and any aerosol perturbation is efficiently buffered. A substantial fraction of the aerosol is transported out of the boundary layer into the capping inversion, where the supersaturation is insufficient for aerosol activation. Our results are robust across different temperature ranges and insensitive to the aerosol injection period. Based on these results we postulate an efficient aerosol processing and transport mechanism that appears to inhibit any long-term aerosol impact on Arctic MPC properties.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-01
    Print ISSN: 0924-7963
    Electronic ISSN: 1879-1573
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, vii, 74, XXVII pp
    Publication Date: 2019-09-23
    Keywords: Course of study: MSc Climate Physics
    Type: Thesis , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: Good Hope for Earth Science - 2017 Joint IAPSO-IAMAS-IAGA Assembly, 27.08.-01.09.2017, Cape Town, South Africa .
    Publication Date: 2019-09-23
    Description: The southwestern basin of the Indian Ocean (SWIO) remains a rather under-sampled region with regards to nitrogen cycle processes. Here we present the results of extensive surface and water column nitrous oxide (N2O) measurements as well as the first reported open ocean measurements of hydroxylamine (NH2OH). Wind-driven upwelling in the zonal band between 5°S and 10°S led to an enhanced efflux of N2O to the atmosphere with saturation values up to 122% and a maximum sea-to-air flux of 2.3 nmol m-2 s-1. N2O depth profiles showed supersaturation conditions throughout the water column with a distinct maximum (~ 30 nmol L-1) at about 1000 m. Excess N2O (ΔN2O) was positively correlated with apparent oxygen utilization (AOU) and nitrate concentrations although different slopes of the ΔN2O/AOU relationships could be identified above and below the concentration maxima. Although the vertical distribution of NH2OH was highly variable, combined analysis with N2O and nutrient data suggests nitrification as the major formation pathway of N2O in the SWIO. Our observations suggest that the SWIO is a rather weak, yet, perennial source of atmospheric N2O which should be considered in future efforts aiming to long-term monitoring of greenhouse gases in the Indian Ocean.
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Paper] In: Statusseminar Meeresforschung mit FS SONNE 2015, 12.-13.02.2015, Bremen, Germany . Tagungsband Statusseminar Meeresforschung mit FS SONNE 2015 ; pp. 236-238 .
    Publication Date: 2015-05-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...