ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract Modern forest management seeks to balance multiple social, economic, and ecological goals. Different management approaches create different types of disturbances in a forest ecosystem, and thus also differ in their impacts on plants, animals, and insects. Understanding these impacts is important for conservation of forest ecosystem function, but challenging due to the large spatial and temporal scale over which management occurs. Most past research has focused on relatively small areas, short time scales, and/or a small number of species. To address this, we examined the effects of two common silvicultural systems (even‐ and uneven‐aged) on abundance and richness of three vertebrate taxa (birds, small mammals, and herpetofauna) over a two‐decade period in a temperate hardwood forest in Missouri, USA. The two systems removed a similar amount of biomass overall, but differed in the intensity, number, and configuration of harvests applied. We found that vertebrate population responses varied by taxa, occurred at multiple spatial scales, and were concentrated in the period following the first harvest entry. Birds generally had the largest changes in relative abundance, both positive and negative, following management. Small mammals and reptiles had smaller, but generally positive, responses; amphibians were mixed. Bird species tended to respond in the same way to both silvicultural systems, while small mammals and herpetofauna did not respond consistently. Thus, for birds, the total amount of harvest disturbance across the landscape drives population responses, while for others the size and configuration of individual harvests is likely more important. Synthesizing results across the vertebrate community at large spatial and temporal scales allows managers to better understand tradeoffs when making decisions that will affect wildlife in contrasting ways. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-02
    Description: An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria. The human armpit has long been noted to host a high biomass bacterial community, and recent studies have highlighted substantial inter-individual variation in armpit bacteria, even relative to variation among individuals for other body habitats. One obvious potential explanation for this variation has to do with the use of personal hygiene products, particularly deodorants and antiperspirants. Here we experimentally manipulate product use to examine the abundance, species richness, and composition of bacterial communities that recolonize the armpits of people with different product use habits. In doing so, we find that when deodorant and antiperspirant use were stopped, culturable bacterial density increased and approached that found on individuals who regularly do not use any product. In addition, when antiperspirants were subsequently applied, bacterial density dramatically declined. These culture-based results are in line with sequence-based comparisons of the effects of long-term product use on bacterial species richness and composition. Sequence-based analyses suggested that individuals who habitually use antiperspirant tended to have a greater richness of bacterial OTUs in their armpits than those who use deodorant. In addition, individuals who used antiperspirants or deodorants long-term, but who stopped using product for two or more days as part of this study, had armpit communities dominated by Staphylococcaceae, whereas those of individuals in our study who habitually used no products were dominated byCorynebacterium. Collectively these results suggest a strong effect of product use on the bacterial composition of armpits. Although stopping the use of deodorant and antiperspirant similarly favors presence of Staphylococcaceae overCorynebacterium, their differential modes of action exert strikingly different effects on the richness of other bacteria living in armpit communities.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...