ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 773 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography B: Biomedical Sciences and Applications 421 (1987), S. 360-366 
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography B: Biomedical Sciences and Applications 572 (1991), S. 203-210 
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography B: Biomedical Sciences and Applications 339 (1985), S. 97-103 
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 73 (1999), S. 1-16 
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Chaos appears in various problems of Relativity and Cosmology. Here we discuss (a) the Mixmaster Universe model, and (b) the motions around two fixed black holes. (a) The Mixmaster equations have a general solution (i.e. a solution depending on 6 arbitrary constants) of Painlevé type, but there is a second general solution which is not Painlevé. Thus the system does not pass the Painlevé test, and cannot be integrable. The Mixmaster model is not ergodic and does not have any periodic orbits. This is due to the fact that the sum of the three variables of the system (α + β + γ) has only one maximum for τ = τm and decreases continuously for larger and for smaller τ. The various Kasner periods increase exponentially for large τ. Thus the Lyapunov Characteristic Number (LCN) is zero. The "finite time LCN" is positive for finite τ and tends to zero when τ → ∞. Chaos is introduced mainly near the maximum of (α + β + γ). No appreciable chaos is introduced at the successive Kasner periods, or eras. We conclude that in the Belinskii-Khalatnikov time, τ, the Mixmaster model has the basic characteristics of a chaotic scattering problem. (b) In the case of two fixed black holes M1 and M2 the orbits of photons are separated into three types: orbits falling into M1 (type I), or M2 (type II), or escaping to infinity (type III). Chaos appears because between any two orbits of different types there are orbits of the third type. This is a typical chaotic scattering problem. The various types of orbits are separated by orbits asymptotic to 3 simple unstable orbits. In the case of particles of nonzero rest mass we have intervals where some periodic orbits are stable. Near such orbits we have order. The transition from order to chaos is made through an infinite sequence of period doubling bifurcations. The bifurcation ratio is the same as in classical conservative systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 78 (2000), S. 243-263 
    ISSN: 1572-9478
    Keywords: Galactic model ; first integral
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We apply the theory of the third integral to a self-consistent galactic model, generated by the collapse of a N-body system. The final configuration after the collapse is a stationary triaxial system, that represents an almost prolate non-rotating elliptical galaxy with its longest axis in the z-direction. This system is represented by an axisymmetric potential V plus a small triaxial perturbation V 1. The orbits in the potential V are of three types: box orbits, tube orbits (corresponding to various resonances), and chaotic orbits. The intersections of the box and tube orbits by a Poincaré surface of section z = 0 are closed invariant curves. The main tube orbits are like ellipses and form an island of stability on the (R,R) plane. We calculated the third integral I in the potential V for the general non-resonant case and for various resonant cases. The agreement between the invariant curves of the orbits and the level curves of the third integral is good for the box and tube orbits, if we truncate the third integral at an appropriate level. As expected the third integral fails in the case of chaotic orbits. The most important result is the form of the number density F on the Poincaré surface of section. This function decreases exponentially outwards for the box orbits, like F ∝ exp(−bI), while it is constant, as expected, for the chaotic orbits. In the case of the island of the main tube orbits it has a minimum at the center of the island. This can be explained by the form of the near elliptical orbits that are elongated along R, thus they fail to support a self-consistent galaxy, which is elongated along the z-axis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 67 (1997), S. 293-317 
    ISSN: 1572-9478
    Keywords: Orbits ; standard map ; dynamical spectra ; Lyapunov characteristic number ; stickines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The spectra of ‘stretching numbers’ (or ‘local Lyapunov characteristic numbers’) are different in the ordered and in the chaotic domain. We follow the variation of the spectrum as we move from the centre of an island outwards until we reach the chaotic domain. As we move outwards the number of abrupt maxima in the spectrum increases. These maxima correspond to maxima or minima in the curve a(θ), where a is the stretching number, and θ the azimuthal angle. We explain the appearance of new maxima in the spectra of ordered orbits. The orbits just outside the last KAM curve are confined close to this curve for a long time (stickiness time) because of the existence of cantori surrounding the island, but eventually escape to the large chaotic domain further outside. The spectra of sticky orbits resemble those of the ordered orbits just inside the last KAM curve, but later these spectra tend to the invariant spectrum of the chaotic domain. The sticky spectra are invariant during the stickiness time. The stickiness time increases exponentially as we approach an island of stability, but very close to an island the increase is super exponential. The stickiness time varies substantially for nearby orbits; thus we define a probability of escape Pn(x) at time n for every point x. Only the average escape time in a not very small interval Δx around each x is reliable. Then we study the convergence of the spectra to the final, invariant spectrum. We define the number of iterations, N, needed to approach the final spectrum within a given accuracy. In the regular domain N is small, while in the chaotic domain it is large. In some ordered cases the convergence is anomalously slow. In these cases the maximum value of ak in the continued fraction expansion of the rotation number a = [a0,a1,... ak,...] is large. The ordered domain contains small higher order chaotic domains and higher order islands. These can be located by calculating orbits starting at various points along a line parallel to the q-axis. A monotonic variation of the sup {q}as a function of the initial condition q0 indicates ordered motions, a jump indicates the crossing of a localized chaotic domain, and a V-shaped structure indicates the crossing of an island. But sometimes the V-shaped structure disappears if the orbit is calculated over longer times. This is due to a near resonance of the rotation number, that is not followed by stable islands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 73 (1999), S. 221-230 
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The resonant structure near a noble cantorus is found. Islands of stability are located near the gaps of the cantorus. The crossing of the gaps of the cantorus by the asymptotic curves of unstable periodic orbits is shown numerically (non-schematically). We discuss how these structures influence stickiness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 73 (1999), S. 211-220 
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Two simple and efficient numerical methods to explore the phase space structure are presented, based on the properties of the "dynamical spectra". 1) We calculate a "spectral distance" D of the dynamical spectra for two different initial deviation vectors. D → 0 in the case of chaotic orbits, while D → const ≠ 0 in the case of ordered orbits. This method is by orders of magnitude faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in time on a rotational torus, while it tends to infinity at a rate ∝ N = number of iterations, in any case other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, as well as the most important cantori causing stickiness near it.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-01
    Print ISSN: 1951-6355
    Electronic ISSN: 1951-6401
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...