ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-25
    Description: Disulfide bond formation in secretory proteins occurs primarily in the endoplasmic reticulum (ER), where multiple enzyme families catalyze cysteine cross-linking. Quiescin sulfhydryl oxidase 1 (QSOX1) is an atypical disulfide catalyst, localized to the Golgi apparatus or secreted from cells. We examined the physiological function for extracellular catalysis of de novo disulfide bond formation by QSOX1. QSOX1 activity was required for incorporation of laminin into the extracellular matrix (ECM) synthesized by fibroblasts, and ECM produced without QSOX1 was defective in supporting cell-matrix adhesion. We developed an inhibitory monoclonal antibody against QSOX1 that could modulate ECM properties and undermine cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ilani, Tal -- Alon, Assaf -- Grossman, Iris -- Horowitz, Ben -- Kartvelishvily, Elena -- Cohen, Sidney R -- Fass, Deborah -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):74-6. doi: 10.1126/science.1238279. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel. tal.ilani@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704371" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Cell Adhesion ; Cell Line, Tumor ; Cell Movement ; Cells, Cultured ; Cysteine/metabolism ; Disulfides/metabolism ; Extracellular Matrix/enzymology/*physiology/ultrastructure ; Fibroblasts/enzymology/ultrastructure ; Humans ; Laminin/metabolism ; Oxidoreductases Acting on Sulfur Group Donors/antagonists & ; inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉〈i〉Emiliania huxleyi〈/i〉 is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of 〈i〉E. huxleyi〈/i〉 blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a 〈i〉Roseobacter〈/i〉 strain, 〈i〉Sulfitobacter〈/i〉 D7, that we isolated from a North Atlantic 〈i〉E. huxleyi〈/i〉 bloom, exhibited algicidal effects against 〈i〉E. huxleyi〈/i〉 upon coculturing. Both the alga and the bacterium were found to co-occur during a natural 〈i〉E. huxleyi〈/i〉 bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, 〈i〉Sulfitobacter〈/i〉 D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which 〈i〉E. huxleyi〈/i〉 strains that exuded higher amounts of DMSP were more susceptible to 〈i〉Sulfitobacter〈/i〉 D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate 〈i〉E. huxleyi〈/i〉 blooms.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-25
    Description: Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-08
    Description: Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...