ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-30
    Description: Nature Geoscience 8, 404 (2015). doi:10.1038/ngeo2417 Authors: K. J. Walowski, P. J. Wallace, E. H. Hauri, I. Wada & M. A. Clynne
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-23
    Description: The Lau Backarc Basin (S.W. Pacific) hosts numerous spreading centers and rifts, including the Rochambeau Rifts (RR), Northwest Lau Spreading Center (NWLSC), and Central Lau Spreading Center (CLSC). Samples from the NWLSC, RR and CLSC show no evidence for a subduction-derived component in their mantle source regions or evidence for S loss during eruption. The contents of S in glasses from the NWLSC and many from the CLSC and the RR are lower than MORB at a given FeOTOT, indicating melts were initially sulfide-undersaturated. During differentiation, the decrease in Cu and Ag contents at ∼7 wt% MgO and the concomitant change in chalcophile element ratios marks the onset of sulfide saturation. The initially sulfide-undersaturated compositions of samples from the NWLSC are attributed to partial melting at pressures higher than parental MORB. The NWLSC and some of the CLSC and RR samples are strikingly enriched in Cu and Ag compared with MORB. This is a characteristic shared by basalts generated in many plume-related tectonic settings. The only plume-related samples that appear to be sulfide-saturated during differentiation and plot within the MORB array are alkaline basalts from the nearby Samoan islands. RR and CLSC basalts have a range in Cu contents, which can be explained by variable mixing between a high-Cu NWLSC-type melt with low-Cu sources from the Samoan plume (RR) and MORB-type mantle (CLSC). The RR alone of these three suites have markedly positive Pb, As, Tl and subtle Mo anomalies, possibly related to assimilation of old, hydrothermally altered, Vitiaz Arc crust.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-29
    Description: Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes Nature Geoscience 5, 224 (2012). doi:10.1038/ngeo1406 Authors: A. M. Shaw, E. H. Hauri, M. D. Behn, D. R. Hilton, C. G. Macpherson & J. M. Sinton Seismic tomographic images indicate that subducted lithosphere is transported into the deep mantle. Petrologic modelling shows that water contained in subducted slabs can be carried to depths of at least 200 km (ref.  ); however, whether the hydrated slab signature is preserved at greater depths depends on diffusion rates. Experimental studies give conflicting results on the question of hydrogen preservation. On a small scale, hydrogen equilibration with ambient mantle should be rapid, implying that the slab hydrogen signature may not be preserved in the deep mantle. However, on large scales the time required for diffusive equilibration is longer and hydrogen anomalies may persist. Here we present hydrogen and boron data from submarine volcanic glasses erupted in the Manus back-arc basin, southwestern Pacific Ocean. We find that samples with low hydrogen-isotope values also exhibit the geochemical signature of dehydrated, subducted lithosphere. Combined with additional geochemical and geophysical data, we interpret this as direct evidence for the preservation of hydrogen anomalies in an ancient slab in the mantle. Our geochemical data are consistent with experimental estimates of diffusion for the upper mantle and transition zone. We conclude that hydrogen anomalies can persist in the mantle without suffering complete diffusive equilibration over timescales of up to a billion years.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-11
    Description: The Moon is generally thought to have formed and evolved through a single or a series of catastrophic heating events, during which most of the highly volatile elements were lost. Hydrogen, being the lightest element, is believed to have been completely lost during this period. Here we make use of considerable advances in secondary ion mass spectrometry to obtain improved limits on the indigenous volatile (CO(2), H(2)O, F, S and Cl) contents of the most primitive basalts in the Moon-the lunar volcanic glasses. Although the pre-eruptive water content of the lunar volcanic glasses cannot be precisely constrained, numerical modelling of diffusive degassing of the very-low-Ti glasses provides a best estimate of 745 p.p.m. water, with a minimum of 260 p.p.m. at the 95 per cent confidence level. Our results indicate that, contrary to prevailing ideas, the bulk Moon might not be entirely depleted in highly volatile elements, including water. Thus, the presence of water must be considered in models constraining the Moon's formation and its thermal and chemical evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saal, Alberto E -- Hauri, Erik H -- Cascio, Mauro L -- Van Orman, James A -- Rutherford, Malcolm C -- Cooper, Reid F -- England -- Nature. 2008 Jul 10;454(7201):192-5. doi: 10.1038/nature07047.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA. asaal@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615079" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hart, S R -- Hauri, E H -- Oschmann, L A -- Whitehead, J A -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):821-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17777036" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-04-24
    Description: Many oceanic island basalts show sublinear subparallel arrays in Sr-Nd-Pb isotopic space. The depleted upper mantle is rarely a mixing end-member of these arrays, as would be expected if mantle plumes originated at a 670-kilometer boundary layer and entrained upper mantle during ascent. Instead, the arrays are fan-shaped and appear to converge on a volume in isotopic space characterized by low (87)Sr/(86)Sr and high (143)Nd/(144)Nd, (206)Pb/(204)Pb, and (3)He/(4)He ratios. This new isotopic component may be the lower mantle, entrained into plumes originating from the core-mantle boundary layer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hart, S R -- Hauri, E H -- Oschmann, L A -- Whitehead, J A -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):517-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17787949" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-15
    Description: Several models exist to describe the growth and evolution of Earth; however, variables such as the type of precursor materials, extent of mixing, and material loss during accretion are poorly constrained. High-precision palladium-silver isotope data show that Earth's mantle is similar in 107Ag/109Ag to primitive, volatile-rich chondrites, suggesting that Earth accreted a considerable amount of material with high contents of moderately volatile elements. Contradictory evidence from terrestrial chromium and strontium isotope data are reconciled by heterogeneous accretion, which includes a transition from dominantly volatile-depleted to volatile-rich materials with possibly high water contents. The Moon-forming giant impact probably involved the collision with a Mars-like protoplanet that had an oxidized mantle, enriched in moderately volatile elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schonbachler, M -- Carlson, R W -- Horan, M F -- Mock, T D -- Hauri, E H -- New York, N.Y. -- Science. 2010 May 14;328(5980):884-7. doi: 10.1126/science.1186239.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK. maria.schonbachler@manchester.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466929" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-28
    Description: The Moon has long been thought to be highly depleted in volatiles such as water, and indeed published direct measurements of water in lunar volcanic glasses have never exceeded 50 parts per million (ppm). Here, we report in situ measurements of water in lunar melt inclusions; these samples of primitive lunar magma, by virtue of being trapped within olivine crystals before volcanic eruption, did not experience posteruptive degassing. The lunar melt inclusions contain 615 to 1410 ppm water and high correlated amounts of fluorine (50 to 78 ppm), sulfur (612 to 877 ppm), and chlorine (1.5 to 3.0 ppm). These volatile contents are very similar to primitive terrestrial mid-ocean ridge basalts and indicate that some parts of the lunar interior contain as much water as Earth's upper mantle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hauri, Erik H -- Weinreich, Thomas -- Saal, Alberto E -- Rutherford, Malcolm C -- Van Orman, James A -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):213-5. doi: 10.1126/science.1204626. Epub 2011 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA. ehauri@ciw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617039" target="_blank"〉PubMed〈/a〉
    Keywords: Chlorine/analysis ; Extraterrestrial Environment ; Fluorine/analysis ; Geologic Sediments ; Iron Compounds ; Magnesium Compounds ; *Moon ; Silicates ; Water/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-11
    Description: Water is perhaps the most important molecule in the solar system, and determining its origin and distribution in planetary interiors has important implications for understanding the evolution of planetary bodies. Here we report in situ measurements of the isotopic composition of hydrogen dissolved in primitive volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. After consideration of cosmic-ray spallation and degassing processes, our results demonstrate that lunar magmatic water has an isotopic composition that is indistinguishable from that of the bulk water in carbonaceous chondrites and similar to that of terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saal, Alberto E -- Hauri, Erik H -- Van Orman, James A -- Rutherford, Malcolm J -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1317-20. doi: 10.1126/science.1235142. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Brown University, Providence, RI 02912, USA. asaal@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661641" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-11-20
    Description: Previous studies have suggested that melting processes are responsible for the trace element variability observed in olivine-hosted basaltic melt inclusions. Melt inclusions from three individual lava samples (two from Mangaia, Cook Islands, and one from Tahaa, Society Islands) have heterogeneous Pb isotopic compositions, even though the erupted lavas are isotopically homogeneous. The range of Pb isotopic compositions from individual melt inclusions spans 50 percent of the worldwide range observed for ocean island basalts. The melt inclusion data can be explained by two-component mixing for each island. Our data imply that magmas with different isotopic compositions existed in the volcanic plumbing system before or during melt aggregation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saal -- Hart -- Shimizu -- Hauri -- Layne -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1481-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉A. E. Saal, S. R. Hart, N. Shimizu, G. D. Layne, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. E. H. Hauri, Department of Terrestrial Magnetism, Carnegie Institution of Washington〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822377" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...