ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-27
    Description: In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4 He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density s and superfluid velocity v s increase as a power law of temperature described by a universal critical exponent that is constrained to be identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nanopores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the following: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of v s that surprisingly can be well-fitted by a power law with a single exponent over a broad range of temperatures; and (iii) decreasing critical velocities as a function of decreasing radius for channel sizes below R ~= 20 nm, in stark contrast with what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...