ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 10033-10041 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have studied the structure and free energy landscape of a semiflexible lattice polymer in the presence of the surface of a polymer crystal. At low temperatures coexistence of two-dimensional integer-folded crystals is observed. As the temperature is increased there is a transition from these crystalline configurations to a disordered coil adsorbed onto the surface. The polymer then gradually develops a three-dimensional character at higher temperatures. We compute the free energy as a function of increasing crystallinity and compare with the free energy profiles assumed by the Lauritizen–Hoffman surface nucleation theory of polymer crystallization. Our free energy profiles exhibit a "sawtooth" structure associated with the successive formation of chain folds. However, in the early stages of crystallization our profiles significantly deviate from those assumed by surface nucleation theory because the initial nucleus is not a single stem but two incomplete stems connected by a fold. This finding has significant implications for the theoretical description of polymer crystallization. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 8143-8153 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Theoretical design of global optimization algorithms can profitably utilize recent statistical mechanical treatments of potential energy surfaces (PES's). Here we analyze the basin-hopping algorithm to explain its success in locating the global minima of Lennard-Jones (LJ) clusters, even those such as LJ38 for which the PES has a multiple-funnel topography, where trapping in local minima with different morphologies is expected. We find that a key factor in overcoming trapping is the transformation applied to the PES which broadens the thermodynamic transitions. The global minimum then has a significant probability of occupation at temperatures where the free energy barriers between funnels are surmountable. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 11070-11079 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we present results for the thermodynamics and dynamics of one of these clusters (NaCl)35Cl−. As the time scales for the structural transitions can be much longer than those accessible by conventional dynamics simulations, we use a master equation to describe the probability flow within a large sample of potential energy minima. We characterize the processes contributing to probability flow between the different nanocrystals, and obtain rate constants and activation energies for comparison with the experimental values. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 2692-2702 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Based upon kinetic Monte Carlo simulations of crystallization in a simple polymer model we present a new picture of the mechanism by which the thickness of lamellar polymer crystals is constrained to a value close to the minimum thermodynamically stable thickness, lmin. The free energetic costs of the polymer extending beyond the edges of the previous crystalline layer and of a stem being shorter than lmin provide upper and lower constraints on the length of stems in a new layer. Their combined effect is to cause the crystal thickness to converge dynamically to a value close to lmin where growth with constant thickness then occurs. This description contrasts with those given by the two dominant theoretical approaches. However, at small supercoolings the rounding of the crystal profile does inhibit growth as suggested in Sadler and Gilmer's entropic barrier model. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 2134-2142 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have studied the thermodynamics of isolated homopolymer chains of varying stiffness using a lattice model. A complex phase behaviour is found; phases include chain-folded "crystalline" structures, the disordered globule and the coil. It is found, in agreement with recent theoretical calculations, that the temperature at which the solid-globule transition occurs increases with chain stiffness, whilst the θ-point has only a weak dependence on stiffness. Therefore, for sufficiently stiff chains there is no globular phase and the polymer passes directly from the solid to the coil. This effect is analogous to the disappearance of the liquid phase observed for simple atomic systems as the range of the potential is decreased. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 7073-7086 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Recent work on the mechanism of polymer crystallization has led to a proposal for the mechanism of thickness selection which differs from those proposed by the surface nucleation theory of Lauritzen and Hoffman and the entropic barrier model of Sadler and Gilmer. This has motivated us to reexamine the model used by Sadler and Gilmer. We again find a fixed-point attractor which describes the dynamical convergence of the crystal thickness to a value just larger than the minimum stable thickness, lmin. This convergence arises from the combined effect of two constraints on the length of stems in a layer: it is unfavorable for a stem to be shorter than lmin and for a stem to overhang the edge of the previous layer. The relationship between this new mechanism and the explanation given by Sadler and Gilmer in terms of an entropic barrier is discussed. We also examine the behavior of the Sadler-Gilmer model when an energetic contribution from chain folds is included. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 8417-8428 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Disconnectivity graphs are used to characterize the potential energy surfaces of Lennard-Jones clusters containing 13, 19, 31, 38, 55, and 75 atoms. This set includes members which exhibit either one or two "funnels" whose low-energy regions may be dominated by a single deep minimum or contain a number of competing structures. The graphs evolve in size due to these specific size effects and an exponential increase in the number of local minima with the number of atoms. To combat the vast number of minima we investigate the use of monotonic sequence basins as the fundamental topographical unit. Finally, we examine disconnectivity graphs for a transformed energy landscape to explain why the transformation provides a useful approach to the global optimization problem. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 6896-6906 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The 38-atom Lennard-Jones cluster has a paradigmatic double-funnel energy landscape. One funnel ends in the global minimum, a face-centered-cubic (fcc) truncated octahedron. At the bottom of the other funnel is the second lowest energy minimum which is an incomplete Mackay icosahedron. We characterize the energy landscape in two ways. First, from a large sample of minima and transition states we construct a disconnectivity graph showing which minima are connected below certain energy thresholds. Second, we compute the free energy as a function of a bond-order parameter. The free energy profile has two minima, one which corresponds to the fcc funnel and the other which at low temperature corresponds to the icosahedral funnel and at higher temperatures to the liquidlike state. These two approaches show that the greater width of the icosahedral funnel, and the greater structural similarity between the icosahedral structures and those associated with the liquidlike state, are the cause of the smaller free energy barrier for entering the icosahedral funnel from the liquidlike state and therefore of the cluster's preferential entry into this funnel on relaxation down the energy landscape. Furthermore, the large free energy barrier between the fcc and icosahedral funnels, which is energetic in origin, causes the cluster to be trapped in one of the funnels at low temperature. These results explain in detail the link between the double-funnel energy landscape and the difficulty of global optimization for this cluster. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 328-334 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We perform a comprehensive survey of the potential energy landscapes of 13-atom Morse clusters, and describe how they can be characterized and visualized. Our aim is to detail how the global features of the funnel-like surface change with the range of the potential, and to relate these changes to the dynamics of structural relaxation. We find that the landscape becomes rougher and less steep as the range of the potential decreases, and that relaxation paths to the global minimum become more complex. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 4234-4249 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We investigate the structures of clusters bound by the Morse potential by mapping the structure of the global minimum as a function of both cluster size and the range of the pair potential. We consider values of the range parameter appropriate to a loosely bound diatomic molecule (longest), two C60 molecules (shortest), and at regular intervals between these two limits. We have studied all cluster sizes with 25 atoms or less and a selection of sizes containing between 35 and 80 atoms. The effect of decreasing the range of the potential is to destabilize strained structures. For the larger clusters the structure of the global minimum changes from icosahedral to decahedral to face-centered cubic as the range is decreased. We have also investigated the effects of temperature on the equilibrium structure by performing a model calculation for a 75-atom cluster. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...