ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-17
    Description: This paper investigates using machine learning to rapidly develop empirical models suitable for system-level aircraft noise studies. In particular, machine learning is used to train a neural network to predict the noise spectra produced by a round jet near a surface over a range of surface lengths, surface standoff distances, jet Mach numbers, and observer angles. These spectra include two sources, jet-mixing noise and jet-surface interaction (JSI) noise, with different scale factors as well as surface shielding and reflection effects to create a multi- dimensional problem. A second model is then trained using data from three rectangular nozzles to include nozzle aspect ratio in the spectral prediction. The training and validation data are from an extensive jet-surface interaction noise database acquired at the NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory. Although the number of training and validation points is small compared a typical machine learning application, the results of this investigation show that this approach is viable if the underlying data are well behaved.
    Keywords: Aircraft Propulsion and Power; Computer Programming and Software
    Type: GRC-E-DAA-TN75937 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...