ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-02-12
    Description: Bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus ×giganteus contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored, nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. ×giganteus - microbe interactions, and further enhancing sustainability of M. ×giganteus production. In this study, cultivated M. ×giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soil conditions and plant compartments on assembly of the M. ×giganteus -associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M . × giganteus plants tended to harbor similar microbial communities across all sites, whereas, the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. ×giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...