ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-01
    Description: Seismic hazards during many disastrous earthquakes are observed to be aggravating at the sites with the soft soil deposits due to amplification of ground motion. The characteristics of strong ground motion, the site category, depth of the soil column, type of rock strata, and the dynamic soil properties at a particular site significantly influence the free field motion during an earthquake. In this paper, free field surface motion is evaluated via seismic site response analysis that involves the propagation of earthquake ground motions from the bedrock through the overlying soil layers to the ground surface. These analyses are carried out for multiple near-fault seismic ground motions at 142 locations in Mumbai city categorized into different site classes. The free field surface motion is quantified in terms of amplification ratio, spectral relative velocity, and spectral acceleration. Seismic site coefficients at different time periods are also evaluated for each site category due to near-fault ground motions from the acceleration response spectra of free field surface motion at each site and the corresponding acceleration response spectra at a reference rock outcrop site.
    Electronic ISSN: 2090-8946
    Topics: Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-01
    Description: A method based on the application of Kötter’s equation is proposed for the complete analysis of active thrust on an inclined wall with inclined cohesionless backfill under surcharge effect. Coulomb’s failure mechanism is considered in the analysis. The point of application of active thrust is determined from the condition of moment equilibrium. The coefficient of active pressure and the point of application of the active thrust are computed and presented in nondimensional form. One distinguishing feature of the proposed method is its ability to determine the point of application of active thrust on the retaining wall. A fairly good comparison is obtained with the existing solutions.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-01
    Print ISSN: 0921-030X
    Electronic ISSN: 1573-0840
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-27
    Description: The seismicity of the National Capital Region (NCR) of India increased significantly over the last decade. Communities in the NCR face significant exposure to damaging seismic events, and the seismic risk arises not only from the region’s proximity to the Himalayan mountains, but also from the socioeconomic vulnerabilities in its communities and the current capacities of different localities to respond to and recover from any unforeseen large seismic event. GIS-based spatial distribution of exposure to seismic hazards (SH) can help decision-makers and authorities identify locations with populations at high seismic risk, and to prepare risk-mitigation plans. Socioeconomic vulnerability (SeV) studies serve as a basis for quantifying qualitative measures. For this purpose, in the present study, the hazard of place (HoP) model is used to assess SeV to seismic hazards in the NCR. Social indicators like age, gender, literacy, family size, built environment, etc., comprising a total of 36 variables, are used to assess a socioeconomic vulnerability index (SeVI) based on factor and principal component (PCA) analyses. Based on PCA, 20 variables were retained and grouped into four factors: socioeconomic status, employment status, building typology, and family size. Ground-motion parameters, estimated from probabilistic seismic hazard assessment, are integrated with the socioeconomic vulnerability index to quantify exposure to seismic hazards. The spatial distributions in the produced socioeconomic-vulnerability index and seismic–hazard–exposure maps highlight the critical areas. The results reveal that areas of low literacy, high unemployment, and poor housing condition show moderate-to-high vulnerability. The south-eastern region of the study area is assessed as a high-risk zone by an integrated SeV–SH risk matrix. The results of this study emphasize the importance of the socioeconomic vulnerability component of disaster risk–reduction programs, from a holistic perspective, for the areas with high seismicity.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...