ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-01-16
    Description: Over the last decades, the expansion of supraglacial debris on worldwide mountain glaciers has been reported. Nevertheless, works dealing with the detection and mapping of supraglacial debris and detailed analyses aimed at identifying the temporal and spatial trends affecting glacier debris cover are still limited. In this study, we used different remote sensing sources to detect and map the supraglacial debris cover, to analyze its evolution, and to assess the potential of different remote-sensed image data. We performed our analyses on the glaciers of Ortles-Cevedale Group (Stelvio Park, Italy), one of the most representative glacierized sectors of the European Alps. High-resolution airborne orthophotos (pixel size 0.5 m × 0.5 m) acquired during the summer season in the years 2003, 2007, and 2012 permitted to map in detail, with an error lower than ±5%, the supraglacial debris cover through a maximum likelihood classification. Our findings suggest that over the period 2003–2012, supraglacial debris cover increased from 16.7% to 30.1% of the total glacier area. On Forni Glacier we extended these quantification thanks to the availability of UAV (Unmanned Aerial Vehicle) orthophotos from 2014 and 2015 (pixel size 0.15 m × 0.15 m): this detailed analysis permitted to confirm debris is increasing on the glacier melting surface (+20.4%) and confirms the requirement of high-resolution data in debris mapping on Alpine glaciers. Finally, we also checked the suitability of medium-resolution Landsat ETM+ data and Sentinel 2 data to map debris in a typical Alpine glaciation scenario where small ice bodies (
    Print ISSN: 0309-1333
    Electronic ISSN: 1477-0296
    Topics: Geography
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-03
    Description: The Karakoram Range is one of the most glacierized mountain regions in the world, and glaciers there are an important water resource for Pakistan. The attention paid to this area is increasing because its glaciers remained rather stable in the early twenty-first century, in contrast to the general glacier retreat observed worldwide on average. This condition is also known as “Karakoram Anomaly”. Here we focus on the recent evolution of glaciers within the Central Karakoram National Park (CKNP, area: *13,000 km2) to assess their status in this region with respect to the described anomaly. A glacier inventory was produced for the years 2001 and 2010, using Landsat images. In total, 711 ice-bodies were detected and digitized, covering an area of 4605.9 ± 86.1 km2 in 2001 and 4606.3 ± 183.7 km2 in 2010, with abundant supraglacial debris cover. The difference between the area values of 2001 and 2010 is not significant (+0.4 ± 202.9 km2), confirming the anomalous behavior of glaciers in this region. The causes of such an anomaly may be various. The increase of snow cover areas from 2001 to 2011 detected using MODIS snow data; the reduction of mean summer temperatures; and the augmented snowfall events during 1980–2009 observed at meteorological stations and confirmed by the available literature, are climatic factors associated with positive mass balances. Because the response of glacier area change to climate variation is very slow for large glaciers, the presence of some of the largest glaciers of the Karakoram Range in this region might have delayed observed effects of such climate change so far, or alternatively, the change may not be sufficient to drive an actual area increase. In this context, improved understanding the role of debris cover, meltwater ponds, and exposed ice cliffs on debris-covered glaciers, and surging glaciers (which are also found abundant here), are required is still an issue to clarify the mechanisms behind the Karakoram Anomaly.
    Print ISSN: 0309-1333
    Electronic ISSN: 1477-0296
    Topics: Geography
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...