ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-06-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-06-01
    Description: SummaryMultifactorial experiments on winter barley cv. Igri grown after potatoes were made from 1981 to 1983 on silty clay loam soils at Rothamsted. All tested combinations of seven factors, each at two levels: with and without autumn pesticide (aldicarb), two sowing dates (September or October), with and without a fungicidal seed treatment (‘Baytan’), with and without spring and summer fungicides, two amounts of nitrogen, two times of applying nitrogen and with and without a growth regulator (‘Terpal’). Growth, development, yield, nitrogen uptake, pests and diseases were monitored. Sowing in September, fungicide sprays in spring and summer, and the growth regulator had the largest mean benefits on grain yield (+0·80, +0·56 and +0·34 t/ha respectively). Some factors interacted with sowing date; thus aldicarb, the fungicide sprays in spring and summer and the later timing of N all increased yield more on the September-than on the October-sown barley. The larger yields on the September-sown plots were associated with more ears/m2 (978 v. 744) and, in spite of fewer grains per ear (17·8 v. 20·1), more grains per m2 (17·6 v. 14·7 × 103), but lighter grains (39·2 v. 42·3 mg). The largest yields each year (ca. 8.0–8.5 t/ha) were obtained from September-sown barley fully protected from pests and from pathogens in spring and summer and given N in April rather than in March.The aphid vectors of barley yellow dwarf virus were sufficiently common and infective in two of the three autumns to infect the September-sown barley sufficiently that their control by aldicar b enhanced yield. Nematodes, slugs and dipterous stem borers were not numerous enough to be damaging in any year. Mildew in autumn was controlled by the seed treatment, but effects on yield were inconsistent. Mildew in spring and summer was more abundant on the October-than on the September-sown barley; it was controlled by fungicide sprays, which increased yield significantly each year. Leaf blotch was more abundant on the September-sown barley.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1986-12-01
    Description: SUMMARYWinter wheat cv. Avalon was sown in autumn 1981, 1982 and 1983 on a clay loam soil following two cereal crops. Multifactorial experiments tested the effects of combinations of the following eight factors, each at two levels: rotation, sowing date, timing of nitrogen, amount of nitrogen, growth regulator, pesticide, spring fungicide and summer fungicide.The best 16-plot mean grain yields in 1982–4 were respectively 8·7, 10·2 and 11·1 t/ha. Rotation had the largest effect on grain yield. Wheat following barley was severely infected with take-all and yielded, on average over 3 years, 2·2 t/ha less than wheat following oats. Take-all was more severe on wheat sown in mid-September than in mid-October; its effects on yield were lessened by early timing of N in 1982. Take-all decreased growth and N uptake mainly after anthesis, and also number of ears and dry weight per grain. Sowing in mid-September compared with mid-October decreased yield of wheat after barley by an average of 0·8 t/ha because take-all was more severe. Early sowing had negligible effects on grain yield of wheat after oats, but increased straw dry weight by 1·1 t/ha.Spring fungioide increased yield by an average of 0·3 t/ha. Effects were larger after barley than after oats, associated with a greater incidence of eyespot after barley. Summer fungioide increased yield by an average of 0·3 t/ha. Foliar diseases were slight in all 3 years. Fusarium ear blight and sharp eyespot were prevalent in 1982 and were not well controlled by the fungioide treatments. Fungicide temporarily decreased the incidence of some components of the mioroflora on the ears. Pesticide increased grain yield of wheat after oats only in 1984, when aphids on the ears were numerous. Aphids were present on early-sown plots in all three autumns but there was little barley yellow dwarf virus infection even without pesticide. Pesticide always decreased the number of nematodes after harvest to fewer than present before sowing. Populations never approached levels expected to affect yield.Early N application (main application early March) resulted in a larger grain yield in 1982 than N applied a month later. In 1983 and 1984 grain yield and N uptake by the grain were greater with the late application, especially when wheat was sown early. The soil contained more mineral N in the autumn of 1982 and 1983 than in 1981. Straw weight was always greater with early than with late application. Increasing the amount of N applied from 163 to 223 kg/ha increased N uptake by 40 kg/ha and grain yield by 0·5 t/ha after oats and by 0·6 t/ha after barley. N uptake in grain plus straw by the best yielding crops ranged from 205 kg/ha in 1982 to 246 kg/ha in 1984.Chlormequat applied at the start of stem extension shortened the stems at maturity by 2 cm each year. In 1984 it inoreased yield of early-sown wheat by 0·3 t/ha and also decreased lodging, which did not occur in the first 2 years.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-05-01
    Description: Drought stress and virus yellows disease are two of the major problems of sugarbeet crop production in the UK. We have calculated the annual national drought losses from 1980 to 1995 by using long term data sets for two sites (IACR-Broom's Barn, Suffolk and ADAS Gleadthorpe, Nottinghamshire) to relate yield loss to cumulative potential summer moisture deficit, and combining these relationships with regional meteorological records, soil type and crop distribution data.Experimentally measured relationships between yield losses and the timing of virus yellows infection were combined with annual survey data of the extent of the problem, and calculated infection dates from the UK aphid suction trap network, to calculate actual national annual losses to the disease. Potential losses in the absence of control measures were then calculated by use of data from trials and surveys of pesticide use.The results showed a mean annual loss of production to drought stress of 141000 t/year of sugar, 10·5% of production, with a loss to the industry of £27·9 million. Losses in individual years varied from zero to 2·5 times the mean figure. Actual losses to virus yellows were much smaller, due to the efficacy of treatments, averaging 24700 t/year of sugar (1·8% of national yield, financial loss £5·5 million). Average potential virus yellows losses in the absence of control measures were approximately double this.Control of virus yellows is a major, cost-effective contributor to rising and consistent sugarbeet production. Nationally, irrigation has made little impact on drought losses and, due to constraints in surface water supply, this situation appears likely to continue. Improved drought stress tolerance represents the largest single opportunity for yield and profitability improvement of the sugarbeet crop in the UK at present. Predicted climate change appears likely to increase the severity of both drought and disease stresses. Drought stress appears relatively less important in other NW European sugarbeet-growing areas.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1983-04-01
    Description: SUMMARYA multifactorial experiment sown to winter wheat cv. Hustler in autumn 1978 tested the effects of combinations of the following eight factors, each at two levels: drill type, sowing date, amount of nitrogen, division of nitrogen, irrigation, autumn pesticide (aldicarb), summer aphicide (pirimicarb), and fungicide (carbendazim, maneb and tridemorph).The mean grain yield of all plots was 9·7 t/ha and the best eight-plot treatment mean was 11·3 t/ha. The factors that had the greatest effect on yield were aphicide and fungicide, mainly from the control of Metopolophium dirhodum and Septoria spp. respectively. Both factors increased grain size and their effects were more than additive and greater with 250 than with 160 kg N/ha. Aphicide and fungicide also temporarily decreased the numbers of microbes on the developing ears. Autumn pesticide gave good control of aphids in the winter and some control in the summer: it also decreased nematode populations and slightly increased yields.Precision sowing compared with random distribution of seeds along the row had little effect on growth or yield. Sowing on 21 September compared with 13 October greatly increased growth early in the season but had less effect after anthesis; it was the only factor that increased yield when aphicide and fungicide were applied. There was negligible infection by barley yellow dwarf virus in crops sown on either date. The amount and division of N fertilizer affected N uptake early in the season and had small effects on the production and survival of tillers. Three N applications instead of one slightly increased grain yields but did not affect total N uptake by grains plus straw, which averaged 190 kg N/ha. The larger amount of N always increased N uptake but decreased yield in the absence of aphicide and fungicide. Irrigation slightly decreased yield despite prolonging the duration of green leaf area.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1985-02-01
    Description: SummaryMulti-factorial experiments on winter wheat cv. Hustler in autumn 1979 and 1980 sown on a clay loam soil following potatoes tested the effects of combinations of the following eight factors, each at two levels: sowing date; amount of nitrogen; division of nitrogen; timing of nitrogen; irrigation; autumn pesticide (aldicarb); summer aphicide (pirimicarb); and fungicide (carbendazim, tridemorph, maneb and captafol).The mean grain yields of all plots in 1980 and 1981 were respectively 9·6 and 8·3 t/ha; the best eight-plot means were 11·2 and 9·9 t/ha. Fungicides had the largest effect on grain yield, increasing it by 0·8 and 1·7 t/ha in 1980 and 1981, mainly by increasing grain size. Effects were greater with earlier sowing and the larger amount of nitrogen. Benefits from fungicide were well related to the control of leaf diseases, mainly Septoria spp., which became severe after anthesis. Fungicide temporarily decreased the number of saprophytic fungi on the developing ears. Aphids that appeared in autumn on plots sown in mid-September were controlled by autumn pesticide, which also prevented the spread of barley yellow dwarf virus that occurred only in 1981. Consequently, yield of early-sown plots in 1981 was increased by autumn pesticide, but only when the severe infection with leaf diseases was controlled by fungicide. Autumn pesticide decreased nematode populations. Aphid populations in summer were small and yield was unaffected by the decrease in numbers that followed application of an aphicide.Sowing on 20 or 15 September, as compared with 19 or 30 October, caused faster growth and development and greater uptake of N from the soil early in the season. Effects were smaller after April: earlier sowing increased total dry weight by 2·5–3·0 t/ha and, when leaf diseases and barley yellow dwarf virus were controlled, increased yield by 0·9-l·0t/ha. Increasing the amount of N applied by 70 kg/ha (from 105 or 80), increased yield only in 1980 and then only when fungicide was used. Extra N decreased yield in 1981 in the absence of fungicide. Extra N always increased N uptake and decreased grain size. Applying mostor all of the Non 4 or 19 March instead of 15 or 23 April resulted in less uptake of N from anthesis onwards and smaller yield, especially in 1980. N in three applications instead of one had negligible effect. Trickle irrigation decreased yield slightly, despite delaying leaf senescence and increasing straw weight. Attributes of wheat on best yielding plots differed little between years. Average values were: 534 ears/m2; 40·7 grains/ear; 40·4 mg/grain; 18·8 t/ha total dry matter and 214 kg N/ha uptake by grain plus straw.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-10-16
    Description: Effects of genetically modified herbicide–tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10–fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock–on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-10-16
    Description: The effects of herbicide management of genetically modified herbicide–tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil–surface–active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface–active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-10-16
    Description: The effects of the management of genetically modified herbicide–tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long–term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 399 (1999), S. 727-728 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SirThe first genetically modified (GM) crops being proposed for commercial planting in the United Kingdom have been altered to make them less sensitive to broad-spectrum herbicides. These crops are intended to allow more efficient weed management and herbicide regimes for the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...