ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1890
    Keywords: Key words Micropropagation ; Glomus intraradices ; Strawberry ; Vesicular-arbuscular mycorrhizae (VAM)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The objective of the current investigation was to develop a reliable method to obtain vesicular-arbuscular mycorrhizae (VAM) in micropropagated plantlets and to determine their influence on growth. An in vitro system for culturing the VA mycorrhizal fungus Glomus intraradices with Ri T-DNA-transformed carrot roots or nontransformed tomato roots was used in this study as a potential active source of inoculum for the colonization of micropropagated plantlets. After root induction, micropropagated plantlets grown on cellulose plugs (sorbarod) were placed in contact with the primary mycorrhizae in growth chambers enriched with 5000 ppm CO2 and fed with a minimal medium. After 20 days of tripartite culture, all plantlets placed in contact with the primary symbiosis were colonized by the VAM fungus. As inoculum source, 30-day-old VA mycorrhizal transformed carrot roots had a substantially higher infection potential than 5-, 10- or 20-day-old VAM. Colonized plantlets had more extensive root systems and better shoot growth than control plants. The VAM symbiosis reduced the plantlet osmotic potential. This response may be a useful pre-adaptation for plantlets during transfer to the acclimatization stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Scientia Horticulturae 49 (1992), S. 9-16 
    ISSN: 0304-4238
    Keywords: Asparagus officinalis ; micropropagation ; photosynthesis ; transpiration
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0304-4238
    Keywords: Asparagus officinalis ; Fragaria x ananassa ; Rubus idaeus ; light ; micropropagation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0168-9452
    Keywords: Asparagus officinalis L. ; Plant regeneration ; Protoplast culture ; Somatic embryo
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 96 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sulphate accumulates in the rhizosphere of plants grown in hydroponic systems. To avoid such sulphate accumulation and promote the use of environmentally sound hydroponic systems, we examined the effects of four sulphate concentrations (0.1, 5,2, 10.4 and 20.8 mM) on photosynthesis, ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activities and related physiological processes in greenhouse–grown tomato plants (Lycopersicon esculentum Mill. cv. Trust). The lowest sulphate concentration (0.1 mM) significantly decreased photosynthetic capacity (Pc) and Rubisco activities on a leaf area basis. This result was supported by our data for dry matter per plant, which was low for plants in the 0.1 mM treatment. The photosynthesis-related variables such as leaf conductance, chlorophyll and soluble protein were lowest for the 0.1 mM treatment. Both total Rubisco activity and the activated ratio were reduced with this treatment. However, Rubisco activities expressed per g of protein or per g of chlorophyll were not significantly affected. These results suggest that sulphur deficiency depressed Pc– by reducing the amount of both Rubisco and chlorophyll and by causing an inactivation of Rubisco. The ratio of organic sulphur vs organic nitrogen (S/N) in plants of the 0.1 mM treatment was far below the normal values. This low S/N ratio might be accountable for the negative effect of low sulphate on Pc and plant growth. Pc and dry matter were not affected until sulphate concentration in the nutrient solution reached a high level of 20.8 mM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-203X
    Keywords: Key words Pineapple ; Temporary immersion ; Automation ; Micropropagation ; Bioreactor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A procedure for the mass propagation of pineapple plants (Ananas comosus L. Merr) using a temporary immersion technique is described. This procedure involved three distinct phases in the automated temporary immersion system: shooting, bud differentiation and elongation. To establish this protocol, we used in vitro shoots obtained from established liquid culture as starting materials. Three culture methods (solid, liquid and temporary immersion) were compared. Temporary immersion increased the multiplication rate and fresh and dry weight after 42 days. Conventional micropropagation (liquid medium) and temporary immersion were compared in combination with paclobutrazol. Paclobutrazol promoted the formation of compact bud clusters with limited leaf development. The highest multiplication rate (106) was found when ex-plants were cultured in shooting medium (MS+2.1 mg/l BA+0.3 mg/l NAA) supplemented with 1 mg/l PB for 7 weeks. A 10-l temporary immersion bioreactor was used to test two approaches during elongation stage: reduction of the shoot-formation period or decrease of the initial number of explants. The highest number of competent and uniform plants (191.8 plant/l) was achieved when shoots were cultured for 4 weeks in shooting medium supplemented with PB.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 17 (1997), S. 123-128 
    ISSN: 1432-203X
    Keywords: Key words Tissue culture ; Fusarium ; Somatic hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This article describes conditions to optimize the yield of viable protoplasts from callus tissue of Asparagus densiflorus cv. Sprengeri and their subsequent regeneration into plantlets. Callus tissue was initiated by culturing spear sections (5–7 mm) on Murashige and Skoog (MS) medium supplemented with 0.8% (wt/vol) Bacto agar, 3% (wt/vol) sucrose, 0.5 mg/l each of nicotinic acid, pyridoxine-HCl, and thiamine-HCl, 1 mg/l p-chlorophenoxyaceticacid (pCPA) and 1 mg/l 6-benzylaminopurine (BAP). The maximum protoplast yield was obtained in a mixture of 1% (wt/vol) Cellulysin, 0.8% (wt/vol) Rhozyme HP 150 and 0.3% (wt/vol) Macerase, dissolved in cell protoplast wash salt solution with 7 mm CaCl2 .2H2O, 3 mm MES, 0.6 m glucose, and 0.1 m mannitol. First divisions were observed after 3–4 days of initial culture. The plating efficiency was highest (7.8%) in half-strength MS semisolid medium containing 1 g/l glutamine, 0.6 m glucose, 0.1 m mannitol, 0.5 mg/l folic acid, 0.05 mg/l biotin, 2 mg/l ascorbic acid, 1 mg/l α-naphthaleneacetic acid, 0.5 mg/l zeatin, and 0.1% (wt/vol) Gelrite. Protoplast-derived microcolonies and microcalli were cultured on the same medium on which the primary callus culture was initiated. After 10–12 weeks, calli were transferred to shoot regeneration medium containing MS salts, 1 mg/l BAP, 0.5 mg/l pCPA and 0.2% Gelrite. Shoots (3–4 cm) were then transferred to MS rooting medium with 2 mg/l indole-3-butyric acid, and 0.2% Gelrite. Plantlets were obtained within 4–5 weeks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-9058
    Keywords: chlorophyll ; gross and net photosynthesis ; Lycopersicon esculentum ; quantum yield ; respiration rate ; ribulose-1,5-bisphosphate carboxylase ; oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gross photosynthetic capacity (PG) of greenhouse-grown tomato plants (Lycopersicon esculentum Mill.) decreased as the leaf aged. The PG of the 10th, 15th and 18th leaves from the top was only 76, 37, and 18 % of PG of the 5th leaf, respectively. Quantum yield (YQ) and dark respiration rate (RD) were also lower in older leaves than in the younger ones. Net photosynthetic rate (PN) was apparent in young fruits (about 10 g FM) or young petioles but no PN was found in large fruits (40 g or more FM) and stems because of high RD. Both PG and RD were lower in older fruits and petioles or in lower parts of the stem compared to the younger ones or upper parts of stem. A sharp decrease in chlorophyll (Chl) content was only measured in the senescing 18th leaf. The Chl content in petioles, stems and fruits was proportional to PG. Decreases in PG of older leaves were attributed to decreases in content rather than activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) since soluble protein content was lower in older leaves than in the younger ones but the specific activity (activity per unit of protein) of RuBPCO was not so. The estimated values of PN of the 10th, 15th and 18th leaves inside the canopy were only 50, 21, and 7 % of that in the 5th leaf. Therefore, leaves below the 18th can be removed in order to ensure a good air circulation and prevent diseases. The significance of photosynthesis in fruit, stem and petioles is not negligible because photosynthesis re-fixes the respired CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-03-01
    Print ISSN: 0006-3134
    Electronic ISSN: 1573-8264
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...