ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Degen, Renate; Vedenin, Andrey; Gusky, Manuela; Boetius, Antje; Brey, Thomas (2015): Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean. Polar Research, 34(1), 24008, https://doi.org/10.3402/polar.v34.24008
    Publication Date: 2023-01-13
    Description: The few existing studies on macrobenthic communities of the deep Arctic Ocean report low standing stocks, and confirm a gradient with declining biomass from the slopes down to the basins as commonly reported for deep-sea benthos. In this study we have further investigated the relationship of faunal abundance (N), biomass (B) as well as community production (P) with water depth, geographical latitude and sea ice concentration. The underlying dataset combines legacy data from the past 20 years, as well as recent field studies selected according to standardized quality control procedures. Community P/B and production were estimated using the multi-parameter ANN model developed by Brey (2012). We could confirm the previously described negative relationship of water depth and macrofauna standing stock in the Arctic deep-sea. Furthermore, the sea-ice cover increasing with high latitudes, correlated with decreasing abundances of down to 〈 200 individuals/m**2, biomasses of 〈 65 mg C/m**2 and P of 〈 75 mg C/m**2/y. Stations under influence of the seasonal ice zone (SIZ) showed much higher standing stock and P means between 400 - 1400 mg C/m**2/y; even at depths up to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic ocean, explaining both the low values in the ice-covered Arctic basins and the high values along the SIZ.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Degen, Renate; Jørgensen, Lis Lindal; Ljubin, Pavel; Ellingsen, Ingrid H; Pehlke, Hendrik; Brey, Thomas (2016): Patterns and drivers of megabenthic secondary production on the Barents Sea shelf. Marine Ecology Progress Series, 546, 1-16, https://doi.org/10.3354/meps11662
    Publication Date: 2023-03-02
    Description: Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian- Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R² = 0.73). The observed pattern indicates tight pelagic- benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future.
    Keywords: 2008-GS-140; 2008-GS-144; 2008-GS-147; 2008-GS-151; 2008-GS-152; 2008-GS-175; 2008-GS-178; 2008-GS-183; 2008-GS-186; 2008-GS-190; 2008-GS-193; 2008-GS-194; 2008-GS-196; 2008-GS-199; 2008-GS-200; 2008-GS-260; 2008-GS-285; 2008-GS-286; 2008-GS-311; 2008-GS-312; 2008-GS-313; 2008-GS-314; 2008-GS-315; 2008-GS-318; 2008-GS-319; 2008-GS-320; 2008-GS-321; 2008-GS-322; 2008-GS-323; 2008-GS-324; 2008-GS-325; 2008-GS-326; 2008-GS-327; 2008-GS-328; 2008-GS-329; 2008-GS-330; 2008-GS-331; 2008-GS-332; 2008-GS-333; 2008-GS-334; 2008-GS-335; 2008-GS-336; 2008-JH-322; 2008-JH-323; 2008-JH-324; 2008-JH-325; 2008-JH-326; 2008-JH-327; 2008-JH-328; 2008-JH-383; 2008-JH-386; 2008-JH-391; 2008-JH-393; 2008-JH-394; 2008-JH-398; 2008-JH-401; 2008-JH-402; 2008-JH-403; 2008-JH-410; 2008-JH-411; 2008-JH-414; 2008-JH-418; 2008-VY-003; 2008-VY-006; 2008-VY-008; 2008-VY-010; 2008-VY-012; 2008-VY-014; 2008-VY-016; 2008-VY-018; 2008-VY-020; 2008-VY-022; 2008-VY-024; 2008-VY-026; 2008-VY-028; 2008-VY-033; 2008-VY-035; 2008-VY-037; 2008-VY-039; 2008-VY-041; 2008-VY-043; 2008-VY-045; 2008-VY-047; 2008-VY-049; 2008-VY-051; 2008-VY-053; 2008-VY-055; 2008-VY-057; 2008-VY-059; 2008-VY-061; 2008-VY-063; 2008-VY-065; 2008-VY-067; 2008-VY-069; 2008-VY-071; 2008-VY-073; 2008-VY-075; 2008-VY-076; 2008-VY-077; 2008-VY-078; 2008-VY-079; 2008-VY-081; 2008-VY-082; 2008-VY-083; 2008-VY-085; 2008-VY-087; 2008-VY-089; 2008-VY-091; 2008-VY-093; 2008-VY-095; 2008-VY-097; 2008-VY-099; 2008-VY-101; 2008-VY-103; 2008-VY-105; 2008-VY-107; 2008-VY-109; 2008-VY-111; 2008-VY-113; 2008-VY-114; 2008-VY-116; 2008-VY-118; 2008-VY-120; 2008-VY-123; 2008-VY-126; 2008-VY-128; 2008-VY-130; 2008-VY-132; 2008-VY-134; 2008-VY-136; 2008-VY-138; 2008-VY-140; 2008-VY-142; 2008-VY-144; 2008-VY-146; 2008-VY-148; 2008-VY-153; 2008-VY-155; 2008-VY-157; 2008-VY-158; 2008-VY-160; 2008-VY-162; 2008-VY-164; 2008-VY-166; 2008-VY-168; 2008-VY-170; 2008-VY-172; 2008-VY-174; 2008-VY-176; 2008-VY-178; 2008-VY-180; 2008-VY-182; 2008-VY-184; 2008-VY-186; 2008-VY-188; 2008-VY-190; 2008-VY-192; 2008-VY-194; 2008-VY-196; 2008-VY-198; 2008-VY-200; 2008-VY-202; 2008-VY-204; 2008-VY-206; 2008-VY-208; 2008-VY-210; 2008-VY-212; 2008-VY-214; 2008-VY-216; 2008-VY-218; 2008-VY-220; 2008-VY-222; 2008-VY-224; 2008-VY-226; 2008-VY-228; 2008-VY-229; 2008-VY-232; 2008-VY-234; 2008-VY-236; 2008-VY-238; 2008-VY-240; 2008-VY-243; 2008-VY-244; 2008-VY-245; 2008-VY-246; 2008-VY-248; 2008-VY-251; 2008-VY-253; 2008-VY-254; 2008-VY-255; 2008-VY-256; 2008-VY-257; 2008-VY-258; 2008-VY-259; 2008-VY-260; 2008-VY-261; 2008-VY-262; 2008-VY-264; 2008-VY-265; 2008-VY-267; 2008-VY-268; 2008-VY-269; 2008-VY-271; 2008-VY-272; 2008-VY-273; 2008-VY-275; 2008-VY-277; 2008-VY-278; 2008-VY-279; 2008-VY-280; 2008-VY-281; 2008-VY-282; 2008-VY-283; 2008-VY-284; 2008-VY-285; 2008-VY-288; 2008-VY-290; 2008-VY-291; 2008-VY-292; 2008-VY-293; 2008-VY-294; 2008-VY-296; 2009-GS-142; 2009-GS-143; 2009-GS-146; 2009-GS-154; 2009-GS-155; 2009-GS-158; 2009-GS-159; 2009-GS-162; 2009-GS-163; 2009-GS-166; 2009-GS-167; 2009-GS-170; 2009-GS-171; 2009-GS-174; 2009-GS-175; 2009-GS-178; 2009-GS-179; 2009-GS-182; 2009-GS-184; 2009-GS-187; 2009-GS-188; 2009-GS-191; 2009-GS-192; 2009-GS-195; 2009-GS-196; 2009-GS-203; 2009-GS-204; 2009-GS-207; 2009-GS-208; 2009-GS-211; 2009-JH-282; 2009-JH-284; 2009-JH-286; 2009-JH-288; 2009-JH-290; 2009-JH-292; 2009-JH-294; 2009-JH-296; 2009-JH-298; 2009-JH-305; 2009-JH-307; 2009-JH-311; 2009-JH-313; 2009-JH-318; 2009-JH-325; 2009-JH-327; 2009-JH-333; 2009-JH-335; 2009-JH-337; 2009-JH-339; 2009-JH-341; 2009-JH-345; 2009-JH-347; 2009-JH-350; 2009-JH-353; 2009-JH-356; 2009-JH-362; 2009-JH-365; 2009-JH-368; 2009-JH-371; 2009-JH-373; 2009-JH-375; 2009-JH-377; 2009-JH-379; 2009-JH-383; 2009-JH-385; 2009-JH-390; 2009-JH-392; 2009-JH-395; 2009-JH-398; 2009-JH-400; 2009-JH-403; 2009-JH-405; 2009-JH-407; 2009-JH-410; 2009-JH-412; 2009-JH-417; 2009-JH-422; 2009-JH-424; 2009-JH-427; 2009-JH-429; 2009-JH-431; 2009-JH-433; 2009-JH-436; 2009-JH-438; 2009-JH-442; 2009-JH-445; 2009-JH-447; 2009-JH-449; 2009-JH-452; 2009-JH-454; 2009-JH-456; 2009-JH-461; 2009-JH-463; 2009-JH-465; 2009-JH-468; 2009-JH-470; 2009-JH-472; 2009-JH-475; 2009-JH-478; 2009-JH-480; 2009-JH-482; 2009-JH-484; 2009-JH-486; 2009-JH-488; 2009-JH-490; 2009-JH-492; 2009-JH-494; 2009-JH-496; 2009-JH-497; 2009-JH-500; 2009-JH-502; 2009-JH-504; 2009-JH-506; 2009-JM-491; 2009-JM-495; 2009-JM-497; 2009-JM-499; 2009-JM-506; 2009-JM-509; 2009-JM-519; 2009-JM-522; 2009-JM-527; 2009-JM-528; 2009-JM-532; 2009-JM-541; 2009-JM-543; 2009-JM-544; 2009-JM-549; 2009-JM-550; 2009-JM-555; 2009-JM-557; 2009-JM-559; 2009-JM-560; 2009-JM-561; 2009-JM-563; 2009-JM-565; 2009-JM-566; 2009-JM-568; 2009-JM-572; 2009-JM-574; 2009-JM-578; 2009-JM-582; 2009-JM-586; 2009-JM-587; 2009-JM-590; 2009-JM-592; 2009-JM-595; 2009-JM-599; 2009-JM-602; 2009-JM-604; 2009-JM-607; 2009-JM-609; 2009-JM-611; 2009-JM-613; 2009-JM-615; 2009-JM-617; 2009-VY-01; 2009-VY-02; 2009-VY-03; 2009-VY-04; 2009-VY-05; 2009-VY-06; 2009-VY-07; 2009-VY-08; 2009-VY-09; 2009-VY-10; 2009-VY-11; 2009-VY-12; 2009-VY-13; 2009-VY-14; 2009-VY-15; 2009-VY-16; 2009-VY-18; 2009-VY-19; 2009-VY-20; 58GS2008; 58GS2009; 58JH2008; 58JH2009; 58JM2009; 90VY2008; 90VY2009; Arctic Ocean; Barents Sea; Basis of event; Campaign of event; Date/Time of event; Event label; G. O. Sars (2003); Jan Mayen; Johan Hjort (1990); Kara Sea; Latitude of event; Location of event; Longitude of event; North Greenland Sea; Norwegian Sea; Secondary production as carbon; Vilnyus
    Type: Dataset
    Format: text/tab-separated-values, 398 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-04
    Keywords: Abundance per area; Arctic Ocean; ARK-XXVII/3; Author(s); B_LANDER; Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Bottom lander; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; Energy production per area; Event label; Family; Genus; Identification; Infraclass; Kingdom; Latitude of event; Location; Longitude of event; MG; Multiboxcorer; Order; Phylum; Polarstern; PS80/221-2; PS80/229-2; PS80/236-3; PS80/241-1; PS80/251-3; PS80/262-2; PS80/278-1; PS80/334-2; PS80/339-1; PS80/355-1; PS80/368-1; PS80/371-1; PS80 IceArc; Rank; Rate of production; see further details; Species; Subclass; Subfamily; Suborder; Subphylum; Superfamily; Superorder; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1513 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-30
    Keywords: Abundance per area; ARK-XXVII/2; Author(s); BC; Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Box corer; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; Energy production per area; Event label; Family; Genus; Giant box corer; GKG; HGIV; Identification; Infraclass; Kingdom; Latitude of event; Location; Longitude of event; N1; N2; N3; N4; N5; North Greenland Sea; Order; Phylum; Polarstern; PS80; PS80/165-9; PS80/174-1; PS80/176-10; PS80/177-1; PS80/185-6; PS80/186-4; PS80/188-4; PS80/191-3; PS80/194-3; PS80/195-3; PS80/197-1; Rank; Rate of production; S1; see further details; Species; Subclass; Subfamily; Subgenus; Suborder; Subphylum; Superfamily; Superorder; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 3567 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-30
    Keywords: Abundance per area; ARK-XIII/2; Author(s); Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; East Greenland continental slope; Energy production per area; Event label; Family; Genus; Giant box corer; GKG; Identification; Infraclass; Infraorder; Kingdom; Latitude of event; Location; Longitude of event; Order; Phylum; Polarstern; PS2830-6; PS2831-5; PS2832-12; PS2833-5; PS2834-6; PS2835-5; PS2836-6; PS2837-6; PS2838-9; PS2839-5; PS2840-4; PS2843-2; PS2847-3; PS2849-7; PS2851-2; PS2853-9; PS2854-2; PS2855-7; PS2859-10; PS2860-7; PS2861-11; PS2868-5; PS44; PS44/057; PS44/058; PS44/059; PS44/060; PS44/062; PS44/063; PS44/064; PS44/065; PS44/067; PS44/068; PS44/069; PS44/072A; PS44/076; PS44/079; PS44/082; PS44/084; PS44/085; PS44/087; PS44/091; PS44/092; PS44/093A; PS44/100; Rank; Rate of production; see further details; Species; Subclass; Subfamily; Subgenus; Suborder; Subphylum; Superfamily; Superorder; Temperature, water; W Spitzbergen; Yermak Plateau
    Type: Dataset
    Format: text/tab-separated-values, 5272 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-22
    Keywords: Abundance per area; Amundsen Basin; ARK-VIII/3; Author(s); Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; Energy production per area; Event label; Family; Gakkel Ridge, Arctic Ocean; Genus; Giant box corer; GKG; Identification; Infraclass; Infraorder; Kingdom; Latitude of event; Location; Lomonosov Ridge, Arctic Ocean; Longitude of event; Makarov Basin; Morris Jesup Rise; Nansen Basin; Order; Phylum; Polarstern; PS19/150; PS19/151; PS19/155; PS19/165; PS19/166; PS19/181; PS19/182; PS19/186; PS19/196; PS19/198; PS19/200; PS19/204; PS19/206; PS19/210; PS19/214; PS19/216; PS19/218; PS19/220; PS19/222; PS19/226; PS19/239; PS19/241; PS19/245; PS19/246; PS19/249; PS19 ARCTIC91; PS2157-7; PS2158-1; PS2159-7; PS2161-5; PS2162-1; PS2163-5; PS2164-7; PS2165-6; PS2166-4; PS2167-4; PS2168-4; PS2170-1; PS2171-1; PS2172-5; PS2174-7; PS2175-6; PS2176-7; PS2177-7; PS2178-6; PS2179-4; PS2180-1; PS2181-1; PS2182-6; PS2183-5; PS2184-4; PS2185-3; PS2186-6; PS2187-6; PS2189-6; PS2190-6; PS2191-4; PS2192-1; PS2193-2; PS2194-1; PS2195-4; PS2196-2; PS2198-1; PS2199-5; PS2200-3; PS2201-2; PS2202-11; PS2205-7; PS2209-3; PS2210-1; PS2212-1; PS2213-1; PS2214-1; Rank; Rate of production; Species; Subclass; Subfamily; Subgenus; Suborder; Subphylum; Subspecies; Superfamily; Superorder; Temperature, water; Yermak Plateau
    Type: Dataset
    Format: text/tab-separated-values, 5341 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2018-10-10
    Description: The recently increased interest in marine trait-based studies highlights one general demand – the access to standardized, reference-based trait information. This demand holds especially true for polar regions, where the gathering of ecological information is still challenging. The Arctic Traits Database is a freely accessible online repository (https://doi.org/10.25365/phaidra.49; http://https://www.univie.ac.at/arctictraits) that fulfils these requests for one important component of polar marine life, the Arctic benthic macroinvertebrates. It accounts for 1) obligate traceability of information (every entry is linked to at least one source), 2) exchangeability among trait platforms (use of most common download formats), 3) standardization (use of most common terminology and coding scheme), and 4) user friendliness (granted by an intuitive web-interface and rapid and easy download options). The combination of these aspects makes the Arctic Traits Database the currently most sophisticated online accessible trait platform in (not only) marine ecology and a role-model for prospective databases of other marine compartments or other (also non-marine) ecosystems. At present the database covers 20 traits (85 trait categories) and holds altogether 8107 trait entries for 1211 macro- and megabenthic taxa. Thus, the Arctic Traits Database will foster and facilitate trait-based approaches in polar regions in the future and increase our ecological understanding of this rapidly changing system.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-25
    Description: The recently increased interest in marine trait-based studies highlights one general demand – the access to standardized, reference-based trait information. This demand holds especially true for polar regions, where the gathering of ecological information is still challenging. The Arctic Traits Database is a freely accessible online repository (https://doi.org/10.25365/phaidra.49; https://www.univie.ac.at/arctictraits, last access: 20 February 2019) that fulfils these requests for one important component of polar marine life, the Arctic benthic macroinvertebrates. It accounts for (1) obligate traceability of information (every entry is linked to at least one source), (2) exchangeability among trait platforms (use of most common download formats), (3) standardization (use of most common terminology and coding scheme) and (4) user-friendliness (granted by an intuitive web interface and rapid and easy download options, for the first time including the option to download a fuzzy coded trait matrix). The combination of these aspects makes the Arctic Traits Database the currently most sophisticated online accessible trait platform in (not only) marine ecology and a role model for prospective databases of other marine compartments or other (also non-marine) ecosystems. At present the database covers 19 traits (80 trait categories) and holds altogether 14 242 trait entries for 1911 macro- and megabenthic taxa. Thus, the Arctic Traits Database will foster and facilitate trait-based approaches in polar regions in the future and increase our ecological understanding of this rapidly changing system.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: ASSW15 - Arctic Science Summit Week 2015, 23.-30.04.2015, Toyama, Japan .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...