ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 5 (1967), S. 1805-1806 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: No Abstract
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-03
    Description: Sensors, Vol. 18, Pages 2126: Spatio-Temporal Optimization of Perishable Goods’ Shelf Life by a Pro-Active WSN-Based Architecture Sensors doi: 10.3390/s18072126 Authors: Daniela De Venuto Giovanni Mezzina The waste in the perishable goods supply-chain has prompted many global organizations (e.g., FAO and WHO), to develop the Hazard Analysis and Critical Control Points (HACCP) protocol that ensures a high degree of food quality, minimizing the losses in all the stages of the farm-to-fork chain. It has been proven that good warehouse management practices improve the average life of perishable goods. The advances in wireless sensors network (WSN) technology offers the possibility of a “smart” storage organization. In this paper, a low cost reprogrammable WSN-based architecture for functional warehouse management is proposed. The management is based on the continuous monitoring of environmental parameters (i.e., temperature, light exposure and relative humidity), and on their combination to extract a spatial real-time prediction of the product shelf life. For each product, the quality decay is computed by using a 1st order kinetic Arrhenius model to the whole storage site area. It strives to identify, in a way compatible with the other products’ shelf lives, the position within the warehouse that maximizes the food expiration date. The shelf life computing and the “first-expired first-out” logistic problem are entrusted to a Raspberry Pi-based central unit, which manages a set of automated pallet transporters for the displacement of products, according to the computed shelf lives. The management unit supports several commercial light/temperature/humidity sensor solutions, implementing ZigBee, Bluetooth and HTTP-request interfaces. A proof of concept of the presented pro-active WSN-based architecture is also shown. Comparing the proposed monitoring system for the storage of e.g., agricultural products, with a typical one, the experimental results show an improvement of the expected expiration date of about 1.2 ± 0.5 days, for each pallet, when placed in a non-refrigerated environment. In order to stress the versatility of the WSN solution, a section is dedicated to the implemented system user interfaces that highlight detecting critical situations and allow timely automatic or human interventions, minimizing the latter.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: This paper proposes a novel architecture of a wearable Field Programmable Gate Array (FPGA)-based platform to dynamically monitor Muscle Fiber Conduction Velocity (MFCV). The system uses a set of wireless sensors for the detection of muscular activation: four surface electromyography electrodes (EMGs) and two footswitches. The beginning of movement (trigger) is set by sensors (footswitches) detecting the feet position. The MFCV value extraction exploits an iterative algorithm, which compares two 1-bit digitized EMG signals. The EMG electrode positioning is ensured by a dedicated procedure. The architecture is implemented on FPGA board (Altera Cyclone V), which manages an external Bluetooth module for data transmission. The time spent for data elaboration is 63.5 ms ± 0.25 ms, matching real-time requirements. The FPGA-based MFCV estimator has been validated during regular walking and in the fatigue monitoring context. Six healthy subjects contributed to experimental validation. In the gait analysis, the subjects showed MFCV evaluation of about 7.6 m/s ± 0.36 m/s, i.e., 〈0.1 m/s, a typical value for healthy subjects. Furthermore, in agreement with current research methods in the field, in a fatigue evaluation context, the extracted data showed an MFCV descending trend with the increment of the muscular effort time (Rested: MFCV = 8.51 m/s; Tired: 4.60 m/s).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...