ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1040-452X
    Keywords: Micromanipulation ; IVM oocytes ; IVM/IVF donor embryos ; Cytochalasin B ; Nocodazole ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In this study, micromanipulation and electrofusion conditions for the cloning of in vitro-produced bovine embryos (here after termed IVM/IVF embryos) derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes were established. The effect of DC field strength on the fusion rate was tested in a model system using pronuclear stage embryos in which a cytoplasmic vesicle was removed and reinserted. Efficient fusion (80%) was obtained by applying a pulse of 1.75 kV/cm for 40 μsec. In vitro development of manipulated pronuclear stage embryos was as efficient as that of unmanipulated control embryos. Different fusion media were compared in the cloning procedure, using IVM oocytes as recipients and blastomeres from day 6 IVM/IVF donor embryos. Zimmermann cell fusion medium reduced the lysis of nuclear transfer embryos compared to F300 (5% vs. 25%). The effects of drugs disrupting the microfilaments and microtubuli were determined. Neither the addition of cytochalasin B (CCB) for 1 hr in the postfusion medium nor incubation of donor blastomeres with nocodazole had a significant effect on the fusion or cleavage rate of the nuclear transfer embryos. Additional experiments demonstrated that there was no difference in developmental potential between nuclear transfer embryos allowed to develop in vitro or in vivo and that the embryos gave a 15% pregnancy rate in recipient cattle. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Polypeptide growth factor activity in serum can be destroyed by treatment with dithiothreitol. When such growth-factor-inactivated serum is used as a supplement of culture media instead of regular serum, normal rat kidney (NRK) cells become quiescent unless defined polypeptide growth factors like insulin and epidermal growth factor (EGF) are added. On this basis a growth-factor-defined medium has been developed for NRK cells, which permits cell proliferation as rapidly as in media supplemented with serum, even at low cell densities. Moreover, cells can be serially passaged in this medium. NRK cells can be induced to grow in semisolid media when incubated with transforming growth factors. The growth-factor-defined medium permits soft agar growth experiments of NRK cells, without interference from polypeptide growth factors in serum. Using this assay system we have shown that EGF alone is unable to induce any degree of anchorage-independent growth in NRK cells. However, a recently identified transforming growth factor from mouse neuroblastoma cells which does not compete with EGF for receptor binding is able to induce progressively growing colonies of NRK cells in soft agar, even without additional EGF.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The cooperative action of 17β-estradiol (E2) and polypeptide growth factors in stimulating proliferation of human breast cancer cells in vitro was investigated. To prevent background estrogenic stimulation, only phenol red-free media were used. When cultured in media supplemented with steroid-stripped serum in which all polypeptide growth factor activity had been chemically inactivated, MCF7 cells were unable to proliferate and became virtually quiescent. In the additional presence of insulin, epidermal growth factor (EGF), and E2, however, cells proliferated as rapidly as did cells cultured in media supplemented with fetal calf serum. Analysis by DNA flow cytometry showed that in the absence of external growth factors, MCF7 cells became arrested predominantly in the G1/G° phase of the cell cycle. Upon addition of insulin in combination with EGF and E2, however, cells reentered the cell cycle with a high degree of synchrony. When added alone, E2 induced only slight mitogenic effects under these growth factor-defined conditions. In contrast, this steroid induced optimal proliferation in conventional steroid-stripped serum, which in itself contained considerable mitogenic activity. Insulin (at 10 μg/ml) was the most potent stimulator of MCF7 cell proliferation under growth factor-defined conditions, resulting in a more than sixfold increase in cell number after 96 hours. Other growth factors such as platelet-derived growth factor (PDGF), transforming growth factor β (TGFβ), and EGF had little effect by themselves and only slightly influenced insulin-induced proliferation. At suboptimal concentrations of insulin (10-100 ng/ml), however, strong synergism was observed between E2 and insulin in inducing MCF7 proliferation. Using the CG5 cell line, a highly E2-sensitive MCF7 variant, synergism with E2 was already observed at 1 ng/ml insulin. It is concluded that MCF7 cells require insulin (or insulin-like growth factors) for proliferation. At suboptimal insulin concentrations, E2 acts synergistically with insulin, possibly by inducing autocrine production of polypeptide growth factors by these cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cation transport and membrane potential were studied during the cell cycle of neuroblastoma cells (clone Neuro-2A) to investigate the role of these parameters in growth regulation. The cells were synchronized by selective detachment of mitotic cells. The membrane potential and intracellular K+ activity were measured with conventional and K+-selective microelectrodes respectively. Both the membrane potential and K+ activity were high in mitosis, decreased to half maximal in G1 phase, and rose again during S phase.K+ efflux across the plasma membrane was studied with 42K+ as a radioactive tracer using a washing method for cells grown in monolayer and a continuous efflux method for mitotic cells in suspension. The intracellular K+ content and unidirectional K+ efflux rate obtained from these measurements showed modulations during the cell cycle similar to those of the membrane potential. Using equations of electrodiffusion theory the membrane permeabilities to K+ and Na+ were calculated. These permeabilities were high in mitosis, decreased rapidly in G1 phase and increased during S phase, followed by a transient decrease in G2 phase. A rapid increase was observed between G2 phase and the next mitosis. A similar pattern was obtained for the K+ conductance. K+ resistance changes during the cell cycle were similar to changes in the specific membrane resistance, measured by microelectrodes, except for the early cell cycle phases (mitosis and G1).These studies clearly demonstrate large modulations of the passive membrane permeability properties during the cell cycle. These modulations can be correlated with physicochemical membrane variations during the cell cycle, such as membrane fluidity and lateral mobility of lipids.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 107 (1981), S. 1-9 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Functional and optimal activities of the (Na+-K+)ATPase, as determined by ouabain-sensitive K+ influx in intact cells and ATP hydrolysis in cell homogenates respectively, have been measured during the cell cycle of neuroblastoma (clone Neuro-2A) cells. The cells were synchronized by selective detachment of mitotic cells.The ouabain-sensitive K+ influx decreased more than fourfold from 1.62 ± 0.11 nmoles/min/106 cells to 0.36 ± 0.25 nmoles/min/106 cells on passing from mitosis to early G1 phase. On entry into S phase a transient sixfold increase to 2.07 ± 0.30 nmoles/min/106 cells was observed, followed by a rapid decline, after which the active K+ influx rose again steadily from 1.03 ± 0.25 nmole/min/106 cells in early S phase to 2.10 ± 0.92 nmoles/min/106 cells just prior to the next mitosis. The ouabain-insensitive component rose linearly through the cycle in the same manner as the protein content/cell.Combining total K+ influx values with efflux data obtained previously showed that net loss of K+ occurred with transition from mitosis to G1 phase while net accumulation occurred with entry into S. Throughout mid-S phase net K+ flux was virtually zero, but a large net influx occurred again just before the next mitosis.The (Na+-K+)ATPase activity measured in cell homogenates decreased rapidly from mitosis to G1 phase and increased steadily throughout S phase, but the transient activation on entry into S phase was not observed.Complete inhibition of the (Na+-K+)ATPase mediated K+ influx by ouabain (5 mM) prevents the cells from entering S phase, while partial inhibition by lower concentrations of ouabain (0.2 and 0.5 mM; km = 0.17 mM) causes partial blockage in G1 and, to a lesser extent, a reduced rate of progression through the rest of the cell cycle. We conclude that the transient increase in (Na+-K+)ATPase mediated K+ influx at the G1/S transition is a prerequisite for entry into S phase, while maintenance of adequate levels of K+ influx is necessary for normal rate of progression through the rest of the cell cycle.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 112 (1982), S. 27-34 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Na+ transport properties of neuroblastoma (clone Neuro-2A) cells have been characterized both in exponentially growing cells and during the cell cycle. In exponentially growing cells, Na+ influx followed the kinetics for a one-compartment system with an influx rate of 9.54 ± 0.96 nmoles/minute/106 cells, equilibrium being reached within 2 minutes. The initial rate of influx in the presence of ouabain (5 mM), a concentration completely inhibiting the (Na+-K+)ATPase and thus backflux of tracer, was 11.33 ± 1.50 nmoles/minute/106 cells and, within error, the same as in the absence of ouabain, provided determinations were made within 3 minutes of ouabain addition.Na+ influx rate was determined at intervals during the cell cycle of synchronized Neuro-2A cells using a 3-minute pulse of 22Na+ in the presence of ouabain. On passing from mitosis to G1-phase Na+ influx decreases from 12.13 ± 1.93 to 7.40 ± 0.90 nmoles/minute/106 cells but increases rapidly and transiently approximately twofold upon entry into S-phase. This transient increase coincides with a transient stimulation of the (Na+-K+) pump activity. It then returns to a steady level of ˜ 12 nmoles/minute/106 cells for most of the remainder S-phase.Intracellular Na+ concentration during the cell cycle was determined from the equilibrium content of 24Na+ and data on the intracellular H2O volume, published previously (Boonstra et al., 1981b). Na+ concentration is maximal in mitosis at 56.96 ± 6.05 mM and decreases rapidly tourfold as cells enter G1-phase. With progression through S-phase a steady increase from 13.80 ± 1.25 mM to 37.35 ± 2.91 mM is observed. Combining the Na+ concentration with the K+ concentration obtained previously (Boonstra et al., 1981b), the K+:Na+ ratio was obtained during the cell cycle. The ratio had a value of between 3 and 5 during most of the cell cycle, but was significantly higher in G1-phase, where the loss of Na+ is considerably greater than the loss of K+. The values for Na+ concentration were combined with membrane potential measurements reported previously (Boonstra et al., 1980b) to obtain the Na+ electrochemical gradient across the cell membrane in the cell cycle. This had a value of 63.2 ± 2.6 mV in mitosis and increased rapidly to reach a maximum value of 84.0 ± 5.5 mV during G1-phase, thereafter maintaining a value of between 73 and 80 mV. The transient increase in Na+ influx and in (Na+-K+)ATPase-mediated K+ influx at the G1/S-phase transition are specifically inhibitable by the diuretic amiloride (0.2 mM) but amiloride has little effect on Na+ or K+ influx in other phases of the cell cycle. This indicated activation of an amiloride-sensitive transport system specically at the G1/S-phase transition and a causal relationship between increased Na+ entry and transient stimulation of the pump at this point in the cell cycle. Further, amiloride (0.1, 0.2 mM) addition was shown to give rise to a significant lengthening of the cell cycle and to cause a partial blockage of the cells specifically in G1-phase, suggesting an important role for the transient ion flux changes in controlling entry into and progression through S-phase.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Several observations have indicated that clustering of growth factor receptors plays an important role in the action of growth factors. In this investigation, we have used the label fracture method to study the effects of epidermal growth factor (EGF) on the lateral distribution of its receptors in A431 epidermoid carcinoma cells. This method allows a direct visualization of immunogold-labeled plasma membrane receptors on ultrastructural level and in addition permits an quantitative analysis of their lateral distribution. EGF receptors were immunogold-labeled according to standard procedures with the monoclonal anti-EGF receptor antibody 2E9 (lgG1), which binds to the EGF receptor in a 1:1 ratio. In the absence of EGF, EGF receptors located on the surface of A431 cells were found to be clustered, as deduced from Poisson variance analysis (p 〈 0.001). Following treatment of A431 cells with EGF, receptor clustering increased rapidly, reaching the maximum within 10 min. Maximal clustering was maintained for 1 h, after which the lateral distribution of receptors returned to the control situation within another hour.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1996-08-01
    Print ISSN: 0925-4773
    Electronic ISSN: 1872-6356
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...