ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Antarctic; Aragonite saturation state; Bacteria, abundance; Bacteria, production as carbon; Bacterial production, standard error; Bacterial production of carbon; Bacterial production of carbon per cell; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Chlorophyll a; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Day of experiment; Effective quantum yield; Electron transport rate, relative; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Irradiance; Laboratory experiment; Light saturation; Maximum light utilization coefficient in carbon per chlorophyll a; Maximum photochemical quantum yield of photosystem II; Maximum photosynthetic efficiency per chlorophyll a biomass; Net photosynthesis rate, oxygen; Nitrate and Nitrite; Nitrogen, organic, particulate; Non photochemical quenching; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, reactive soluble; Photoinhibition in carbon per chlorophyll a; Polar; Primary production/Photosynthesis; Primary production of carbon; Prydz_Bay_OA; Replicate; Respiration rate, oxygen; Salinity; Silicate, reactive; Specific primary production of carbon per Chlorophyll a; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 33887 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Westwood, Karen; Thomson, Paul G; van den Enden, Rick; Maher, L E; Wright, S; Davidson, Andrew T (2018): Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer. Journal of Experimental Marine Biology and Ecology, 498, 46-60, https://doi.org/10.1016/j.jembe.2017.11.003
    Publication Date: 2024-03-15
    Description: Polar waters may be highly impacted by ocean acidification (OA) due to increased solubility of CO2 at colder water temperatures. Three experiments examining the influence of OA on primary and bacterial production were conducted during austral summer at Davis Station, East Antarctica (68°35′ S, 77°58′ E). For each experiment, six minicosm tanks (650 L) were filled with 200 μm filtered coastal seawater containing natural communities of Antarctic marine microbes. Assemblages were incubated for 10 to 12 days at CO2 concentrations ranging from pre-industrial to post-2300. Primary and bacterial production rates were determined using NaH14CO3 and 14C-leucine, respectively. Net community production (NCP) was also determined using dissolved oxygen. In all experiments, maximum photosynthetic rates (Pmax, mg C mg/chl a/h) decreased with elevated CO2, clearly reducing rates of total gross primary production (mg C/L/h). Rates of cell-specific bacterial productivity (μg C/cell/h) also decreased under elevated CO2, yet total bacterial production (μg C/L/h) and cell abundances increased with CO2 over Days 0–4. Initial increases in bacterial production and abundance were associated with fewer heterotrophic nanoflagellates and therefore less grazing pressure. The main changes in primary and bacterial productivity generally occurred at CO2 concentrations 〉 2 × present day (〉 780 ppm), with the same responses occurring regardless of seasonally changing environmental conditions and microbial assemblages. However, NCP varied both within and among experiments, largely due to changing nitrate + nitrite (NOx) availability. At NOx concentrations 〈 1.5 μM photosynthesis to respiration ratios showed that populations switched from net autotrophy to heterotrophy and CO2 responses were suppressed. Overall, OA may reduce production in Antarctic coastal waters, thereby reducing food availability to higher trophic levels and reducing draw-down of atmospheric CO2, thus forming a positive feedback to climate change. NOX limitation may suppress this OA response but cause a similar decline.
    Keywords: Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Bacteria; Bacterial production of carbon; Bacterial production of carbon per cell; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_OA; Entire community; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross primary production of carbon; Gross primary production of oxygen; Laboratory experiment; Maximum photosynthetic efficiency per chlorophyll a biomass; Nanoflagellates, heterotrophic; Net community production of oxygen; Nitrate and Nitrite; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Photosynthetic efficiency, carbon production; Polar; Primary production/Photosynthesis; Ratio; Respiration; Respiration rate, oxygen; Salinity; Saturation light intensity; Silicate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 5854 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.
    Keywords: Abbreviation; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Chlorophyll a; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_OA; Entire community; EXP; Experiment; Experiment day; Fragilariopsis curta; Fragilariopsis cylindrus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Maximum photochemical quantum yield of photosystem II; Nitrate and Nitrite; Number of cells; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, reactive soluble; Polar; Primary production/Photosynthesis; Proboscia truncata; Proton concentration; Pseudonitzschia turgiduloides; Registration number of species; Replicate; Salinity; Silicate; Silicification; Species; Stellarima microtrias; Temperature, water; Thalassiosira antarctica; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 104844 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNFs), nano- and picophytoplankton, and prokaryotes (heterotrophic Bacteria and Archaea) in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥634 µatm, HNF abundance was reduced, coinciding with increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNFs. Nanophytoplankton abundance was elevated in the 634 µatm treatment, suggesting that moderate increases in CO2 may stimulate growth. The taxonomic and morphological differences in CO2 tolerance we observed are likely to favour dominance of microbial communities by prokaryotes, nanophytoplankton, and picophytoplankton. Such changes in predator–prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean, intensifying organic-matter recycling in surface waters; reducing vertical carbon flux; and reducing the quality, quantity, and availability of food for higher trophic levels.
    Keywords: Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard error; Chlorophyll a; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Duration, number of days; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Irradiance; Laboratory experiment; Light attenuation, vertical; Nanoflagellates, heterotrophic; Nanophytoplankton; Nitrogen oxide; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Picophytoplankton; Polar; Position; Prokaryotes; Prydz_Bay_OA; Replicate; Salinity; Silicate; Species; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 53927 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Primary production in the Southern Ocean is dominated by diatom-rich phytoplankton assemblages, whose individual physiological characteristics and community composition are strongly shaped by the environment, yet knowledge on how diatoms allocate cellular energy in response to ocean acidification (OA) is limited. Understanding such changes in allocation is integral to determining the nutritional quality of diatoms and the subsequent impacts on the trophic transfer of energy and nutrients. Using synchrotron-based Fourier transform infrared microspectroscopy, we analysed the macromolecular content of selected individual diatom taxa from a natural Antarctic phytoplankton community exposed to a gradient of fCO2 levels (288–1263 µatm). Strong species-specific differences in macromolecular partitioning were observed under OA. Large taxa showed preferential energy allocation towards proteins, while smaller taxa increased both lipid and protein stores at high fCO2. If these changes are representative of future Antarctic diatom physiology, we may expect a shift away from lipid-rich large diatoms towards a community dominated by smaller taxa, but with higher lipid and protein stores than their present-day contemporaries, a response that could have cascading effects on food web dynamics in the Antarctic marine ecosystem.
    Keywords: Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Coast and continental shelf; Community composition and diversity; Compounds; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_Antarctica; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peak area; Pelagos; pH; Phosphorus, reactive soluble; Polar; Salinity; Sample code/label; Silicate; Species; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 98002 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Concentrations of plankton, suspended particles 0.74–87 μm equivalent spherical diameter and dissolved organic carbon (DOC) were measured from May to February at an Antarctic coastal site. Bacteria-sized particles 0.74–1 μm diameter, and bacterial cells and heterotrophic protists all exhibited a seasonal minimum during winter and maxima in summer. Bacteria composed 〈10% of the bacteria-sized particles. Release of autotrophic protists from the ice caused water column biomass of autotrophs to reach maximum concentrations in October and November, but maximum cell concentration in the water column was reached in January. Microheterotroph biomass weakly reflected the release of the ice algal community but reached maximum concentration during the water column bloom in January. Total DOC concentrations varied from 0.36 mg C l−1 in July to 3.10 mg C l−1 in October, with a yearly average of 1.51 mg C l−1. Ultrafiltration of DOC revealed that the molecular weight composition of the DOC differed greatly through the year. DOC 〈5 kDa molecular weight reached a maximum of 1.25 mg C l−1 in October and accounted for up to 60% of total DOC in July. Concentrations of high molecular weight DOC (〉100 kDa) were highest in July and November, with the DOC (100 kDa–0.5 μm) fraction reaching a maximum of 1.22 mg C l−1 in November and composing 82% of the total DOC in January. Wet chemical oxidation and high-temperature catalytic oxidation organic carbon analyses were compared. Good correlation was observed between methods during summer but no significant correlation existed in winter, indicating that winter DOC may be refractory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Changes in the concentrations of bacteria, phytoplankton, protozoa, dissolved organic carbon (DOC), particulate organic carbon (POC), particulate carbohydrate (PCHO) and particulate organic nitrogen (PON) were followed throughout the summer at an Antarctic coastal site. The colonial prymnesiophyte Phaeocystis pouchetii was the first major phytoplankton species to bloom, reaching concentrations of 6 × 107 cells · 1−1 and remained numerically dominant for most of the summer. During the P. pouchetii bloom the concentration of most other autotrophs did not increase. Microheterotroph abundance peaked during or immediately after the Phaeocystis bloom. Their peak coincided with very high concentrations of organic carbon, particularly DOC which exceeded 100 mg · 1−1, and low bacterial abundance. Maximum bacterial abundance was reached after the decline in microheterotroph numbers. Bacterial utilization of carbon substrates and microheterotroph grazing of bacteria and uptake of DOC may form an important link to higher trophic levels during Antarctic Phaeocystis blooms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-11
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-08-23
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-11
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...