ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Cells in the mucosal barrier are equipped to sense and respond to microbes in the lumen and translate this molecular information into signals that can reach local or distant sites. The interaction of P-fimbriated Escherichia coli with human uroepithelial cells is a model to study the molecular mechanism of epithelial cell activation by mucosal pathogens. Here, we examine the role of lipopolysaccharide (LPS) as a co-stimulatory molecule in epithelial cell activation by P-fimbriated E. coli. P-fimbriated clinical isolates or recombinant strains were shown to trigger a fimbriae-dependent epithelial cell cytokine response. Mutational inactivation of the msbB sequences that control lipid A myristoylation drastically impaired monocyte stimulation but not epithelial responses to P-fimbriated bacteria. Polymyxin B or bactericidal/permeability increasing factor (BPI) neutralized the effects of lipid A in the monocyte assay, but did not reduce epithelial responses. Finally, isolated LPS of the smooth, rough and deep rough chemotypes were poor epithelial cell activators. The cells were shown to lack surface CD14 or CD14 mRNA as well as the CD14 co-receptor function and were also very poor LPS responders in the presence of human serum. These results demonstrate that epithelial cell responses to P-fimbriated E. coli are CD14 and LPS independent, and suggest that attaching pathogens can overcome the LPS unresponsiveness of epithelial cells by fimbriae-dependent activation mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 42 (1994), S. 595-603 
    ISSN: 1432-0614
    Keywords: Single-chain antibody ; Protein folding ; cell lysis ; sFv
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The bacterial expression of a single-chain antibody fragment, designated L6 sFv, was examined. Periplasmic targeting resulted in the production of a correctly folded protein that bound tumor antigen. However, immediately after induction at either 30°C or 37°C there was a significant loss in bacterial viability, which was followed by a loss in absorbance. The loss in absorbance correlated with cell lysis and release of the L6 sFv into the culture supernatant. The kinetics of appearance of L6 sFv in the supernatant paralleled that of periplasmic \-lactamase and confirmed an initial loss of cell-wall integrity prior to cell lysis. Bacteria incubated at 30°C produced approximately threefold more correctly folded antibody fragment because of an increase in the number of cells/A 660 at the lower incubation temperature. More than 95% of the L6 sFv, made at either incubation temperature, was incorrectly folded. Osmotic-shock procedures did not release L6 sFv. However, in situ subtilisin susceptibility experiments with bacterial spheroplasts confirmed a periplasmic location. French press disruption resulted in the release of correctly but not incorrectly folded material. Membrane fractionation revealed that the incorrectly folded L6 sFv remained associated with both the inner and outer membrane. These results demonstrate that, in this system, antibody fragment expression resulted initially in cell death, which was followed by release of protein into the culture supernatant and eventually cell lysis. It is also suggested that membrane association in the periplasmic space may impede proper folding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 42 (1994), S. 595-603 
    ISSN: 1432-0614
    Keywords: Key words Single-chain antibody ; Protein folding ; cell lysis ; sFv
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The bacterial expression of a single-chain antibody fragment, designated L6 sFv, was examined. Periplasmic targeting resulted in the production of a correctly folded protein that bound tumor antigen. However, immediately after induction at either 30°  C or 37°  C there was a significant loss in bacterial viability, which was followed by a loss in absorbance. The loss in absorbance correlated with cell lysis and release of the L6 sFv into the culture supernatant. The kinetics of appearance of L6 sFv in the supernatant paralleled that of periplasmic β-lactamase and confirmed an initial loss of cell-wall integrity prior to cell lysis. Bacteria incubated at 30°  C produced approximately threefold more correctly folded antibody fragment because of an increase in the number of cells/A 660 at the lower incubation temperature. More than 95% of the L6 sFv, made at either incubation temperature, was incorrectly folded. Osmotic-shock procedures did not release L6 sFv. However, in situ subtilisin susceptibility experiments with bacterial spheroplasts confirmed a periplasmic location. French press disruption resulted in the release of correctly but not incorrectly folded material. Membrane fractionation revealed that the incorrectly folded L6 sFv remained associated with both the inner and outer membrane. These results demonstrate that, in this system, antibody fragment expression resulted initially in cell death, which was followed by release of protein into the culture supernatant and eventually cell lysis. It is also suggested that membrane association in the periplasmic space may impede proper folding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-12-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-12-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...