ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 170 (1952), S. 454-455 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The T-particle enters the emulsion from the glass almost horizontally, and, after travelling for about 8,000 microns, decays at rest into three particles, with tracks a, b and c (see photograph). The first two of these go into the glass after 2,600 and 2,000 microns in the emulsion respectively; ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 215 (1967), S. 586-588 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Barbieri has shown that it is possible to differentiate between the gravitational and Cosmological components of the red-shift of quasars by observational means. On the other hand, the interpretation of the results depends to a considerable extent on whether the source is considered to be static or ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 37 (1975), S. 335-364 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A quantitative re-formulation of Hoyle's theory on the formation of the solar system is attempted, according to a three-dimensional scheme based on the assumption that the original magnetic field of the star is a dipole field. This allows us to obtain analytic expressions for the main paraeters describing the different phases of the process. The protostar is assumed to evolve in gravitational contraction along the Hayashi track, along which, for a given value of the radiusR 0 depending on the total angular momentum, matter begins to be shed at the equator as a consequence of centrifugal instability. However, owing to the geometry of the dipole field and to Hoyle's assumption that, for a star with a convective envelope, the sign of the inward magnetic pressure determines whether the magnetic lines do wind up or not, it turns out that the magnetic coupling between the star and the disk formed at the equator starts only when the radius of the contracting star has reached the value ofR s=4/5R 0; and that the shedding of matter stops for a radius valueR d, depending on the strength of the magnetic field. One is thus able to calculate the total quantity of matter emitted at the solar equator and the distance reached by the rings thus formed as functions of the radius of the star, of the initial values of the magnetic field, of the total angular momentum and of the structural factors of the star. The quantitative results are discussed in order to see whether it is possible to deduce the main characteristics of the disk, from which the solar system should have originated, for reasonable values of these main parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 50 (1977), S. 253-279 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Brosche (1970) has proposed a theory in which the energy loss due to collisions among gas clouds contained in a galaxy constitutes the driving mechanism for its evolution, through virial equilibrium states which, from an initial spherical shape, makes it to contract towards an elongated form; moreover, the value of the total angular momentum, assumed as given by uniform rotation, is assumed to determine the galaxy type on the Hubble sequence and to strongly influence the contraction time from the initial spherical to the final flat configuration. We have modified Brosche's scheme by assuming as models the rotating polytropes of Chandrasekhar and Lebovitz with variable density from centre to border. As a consequence of this change, centrifugal shedding of matter is attained at the equator of the contracting ellipsoid for a configuration with an axial ratio different from zero, so that, hereafter, a flat disk is formed surrounding the internal bulge, with a decreasing overall eccentricity; the rotation curve assumes then an aspect qualitatively similar to the one observed for spiral galaxies. We have further considered the feedback of star formation which, by exhausting the material of the gas clouds, is able to stop the driving mechanism of evolution before the final flat stage is attained at several positions according to the value of the angular momentum. Numerical calculations seem to indicate that one can obtain in this way, by varying the angular momentum and the initial number of clouds, different galaxy types (elliptical, lenticular, spiral) resembling those of the Hubble sequence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 59 (1978), S. 129-151 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A model is presented consisting of two different axially deformed polytropic spheroids, homocentric and coaxial — with arbitrary values for the two masses, the two equatorial radii and the two polytropic indices — interacting with each other only gravitationally. The model represents the two main components, halo and bulge plus disk, of a galaxy. The flattening of the two spheroids is assumed to be due to rigid-body rotation and tidal interaction, and the treatment follows closely the method of Chandrasekhar and Lebovitz for single polytropic structures. All useful quantities are evaluated up to first order in the two rotation frequencies. The main properties of sequences of models intended to mimic evolution at constant masses and constant angular momenta are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 3 (1969), S. 123-138 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A statistical research on evolved stars beyond hydrogen exhaustion is performed by comparing the H-R diagrams of about 60 open clusters with a set of isochronous curves without mass loss derived from Iben's evolutionary tracks and time scales for Population I stars. Interpreting the difference in magnitude between the theoretical positions thus calculated and the observed ones as due to mass loss, when negative, the results indicate that this loss may be conspicuous only for very massive and red stars. However, a comparison with an analogous work of Lindoff reveals that the uncertainties connected with the bolometric and colour corrections may invalidate by a large amount the conclusions which might be drawn from such research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 84 (1982), S. 271-296 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In the present paper, a general evolutionary scheme for axisymmetrical rotationally supported equilibrium models for galaxies is considered. Its main phases are: an expansion phase of the initial protogalaxy, assumed to consist into an homogeneous gas sphere structured into clouds, from recombination to maximum expansion, during which it is surmized that angular momentum is acquired by tidal interactions by the expanding configuration; then a violent relaxation collapse phase, following maximum expansion and ending into a virialized deformed polytropic configuration; the reaching of virialization is considered as an adequate initial state for the new phase of virialized contraction of the gaseous component, due to the collisions of the constituent gas clouds, while the stellar component, due to the stars already formed according to a generalized Schmidt-type law during the early expansion and violent relaxation phases, is assumed to have reached a stabilized situation. The initial mean density and radius for both galaxy and component clouds expressed as functions of the density fluctuation spectrum at recombination, act as physical parameters determining the characteristics of the system at maximum expansion, together with the total amount of angular momentum acquired during the expansion phase. The main physical parameters at virialization are then completely specified when the initial distribution of the clouds inside the galaxy is assigned and the constants appearing in it are derived by normalization with the observed data. We find for systems of given mass that the larger the angular momentum per unit mass is: (1) the larger are the equatorial semiaxis at maximum expansion and at virialization and the lower the mean density; (2) the larger is the time elapsed up the maximum expansion and to virialization; while for systems of different mass, we obtain that to the larger mass correspond the larger time elapsed up to maximum expansion and to virialization, and the lower mean density. For the contraction phase following virialization, two limiting cases are considered: (A) either the star component already present at virialization is entirely neglected; (B) or it is thought to contract as the gas component. In such cases, it is found for systems of equal mass that lower angular momenta lead to final configurations characterized by no or small flat gaseous components (which may correspond to lenticulars and early type spirals) while the contrary is true for large angular momenta (corresponding to late type spirals and irregulars). As mass and angular momentum per unit mass decrease, according to an assumed lawj ∝M, the allowed configurations on the late type side of the morphological sequence tend towards earlier and earlier types, until for masses low enough (≲1010 m ⊙), only halo type configurations seem to exist. According to this view, the observed lack of spirals with masses below 1010 m ⊙ and the wide mass range exibited by the stellar halo type galaxies might be interpreted. In general, it appears that in the limit of the approximations made, a morphological sequence of galaxies can be described by two parameters, mass and angular momentum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 27 (1974), S. 497-512 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In a previous work by two of us, the main difficulties of the theory of galaxy formation from universal primordial cosmic turbulence were focussed; it was mainly found that the decay of the turbulence was so strong during the plasma era that turbulence should have been almost completely washed out before recombination, unless, and only for low-density universes, unlikely large turbulent velocities were postulated at the largest scale of the turbulence at the end of the radiation era. It was suggested that a possibility to turn around such a difficulty should consist in finding en adequate physical energy source feeding the turbulence during at least the whole plasma phase. The present work is intended to test whether matter-antimatter annihilation theory at the origin of the universe, as it is developed by Omnès and his collaborators, may be considered to yield the required energy source of the turbulence. To this aim, the main results of the work of Stecker and Puget concerning the behaviour of the most important quantities of the matter- antimatter annihilation theory are used, in order to describe the properties of the energy source for the turbulence down to recombination time, and extended to take a somewhat more detailed account of theirz and mean matter density dependences. The energy feeding source thus obtained is then introduced into the general framework of the galaxy formation theory from cosmic turbulence taking account of energy dissipation as developed in our previous works. The results obtained concerning the comparison of the main parameters of galaxies derived from the theory with the experimental data are much more satisfactory than in the previous approach, and show that, inside the errors of the present day values, sufficiently good fits are possible in a range of mean universe densities between 0.4 to 1 times the critical density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1969-01-01
    Print ISSN: 0004-640X
    Electronic ISSN: 1572-946X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1978-11-01
    Print ISSN: 0004-640X
    Electronic ISSN: 1572-946X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...