ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-01-09
    Description: The structure of Mengo virus, a representative member of the cardio picornaviruses, is substantially different from the structures of rhino- and polioviruses. The structure of Mengo virus was solved with the use of human rhinovirus 14 as an 8 A resolution structural approximation. Phase information was then extended to 3 A resolution by use of the icosahedral symmetry. This procedure gives promise that many other virus structures also can be determined without the use of the isomorphous replacement technique. Although the organization of the major capsid proteins VP1, VP2, and VP3 of Mengo virus is essentially the same as in rhino- and polioviruses, large insertions and deletions, mostly in VP1, radically alter the surface features. In particular, the putative receptor binding "canyon" of human rhinovirus 14 becomes a deep "pit" in Mengo virus because of polypeptide insertions in VP1 that fill part of the canyon. The minor capsid peptide, VP4, is completely internal in Mengo virus, but its association with the other capsid proteins is substantially different from that in rhino- or poliovirus. However, its carboxyl terminus is located at a position similar to that in human rhinovirus 14 and poliovirus, suggesting the same autocatalytic cleavage of VP0 to VP4 and VP2 takes place during assembly in all these picornaviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, M -- Vriend, G -- Kamer, G -- Minor, I -- Arnold, E -- Rossmann, M G -- Boege, U -- Scraba, D G -- Duke, G M -- Palmenberg, A C -- New York, N.Y. -- Science. 1987 Jan 9;235(4785):182-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3026048" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Viral ; Antiviral Agents/metabolism ; Binding Sites ; Capsid ; Crystallography ; Macromolecular Substances ; *Mengovirus/analysis/ultrastructure ; Poliovirus ; Protein Conformation ; Receptors, Virus ; Rhinovirus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The origin of transfer (oriT) of the IncFV plasmid pED208 contains a region with three binding sites for both the plasmid-encoded TraM protein and the integration host factor (IHF) of Escherichia coli, a sequence-specific DNA-binding protein. One region, containing overlapping TraM and IHF binding sites, could be interpreted as containing two binding sites for each protein. Using gel retardation assays, an affinity constant for IHF binding to the three main sites was estimated in the presence and absence of 0.1 M potassium glutamate, which increased the avidity of IHF binding to the weaker sites by two orders of magnitude. DNase I protection analyses and electron microscopy were used to determine the affinity of IHF for oriT-containing DNA in the presence and absence of TraM. The binding of IHF and TraM was found to be non-cooperative by the two techniques employed. Electron microscopy also demonstrated that IHF bent the oriT region in a manner consistent with its previously determined mode of action, while TraM had no discernible effect on the appearance of the DNA. This suggested that IHF and TraM interact with a 295 by sequence in the oriT region and organize it into a higher order structure that may have a role in the initiation of DNA transfer and control of traM expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...