ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part B: Fundamentals (ISSN 1040-7790); 19; 49-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A new explicit variable time-integration methodology and architecture which possesses self-starting attributes, eliminates the need to involve acceleration computations, and which has improved accuracy characteristics in comparison to the traditional central-difference-type formulations customarily advocated is described for applicability to computational structural dynamics. To sharpen the focus of the present study, an explicit variable time-integration architecture which is relatively simple, yet effective, is described. Unlike variable explicit time-integration formulations adopted in the past, the present self-starting variable time-integration architecture and implementation aspects facilitate a simplified representation and a straightforward and effective approach for combining finite element meshes requiring different time steps in a single analysis. Numerical test cases are provided which demonstrate the applicability of the proposed formulations.
    Keywords: STRUCTURAL MECHANICS
    Type: International Journal for Numerical Methods in Engineering (ISSN 0029-5981); 33; 6 Ap
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...