ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-24
    Description: Iron is essential for both microorganisms and their hosts. Although effects of dietary iron on gut microbiota have been described, the effect of systemic iron administration has yet to be explored. Here, we show that dietary iron, intravenous iron administration, and chronic transfusion in mice increase the availability of iron in the gut. These iron interventions have consistent and reproducible effects on the murine gut microbiota; specifically, relative abundance of the Parabacteroides and Lactobacillus genera negatively correlate with increased iron stores, whereas members of the Clostridia class positively correlate with iron stores regardless of the route of iron administration. Iron levels also affected microbial metabolites, in general, and indoles, in particular, circulating in host plasma and in stool pellets. Taken together, these results suggest that by shifting the balance of the microbiota, clinical interventions that affect iron status have the potential to alter biologically relevant microbial metabolites in the host.
    Electronic ISSN: 2055-5008
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    Publication Date: 2018-11-29
    Description: The goal of this project was to identify and target metabolic vulnerabilities of leukemia stem cells (LSCs) to improve therapeutic outcomes for patients with AML. We have previously shown that primary human LSCs reside in a unique metabolic condition characterized by a relatively low oxidative state (termed "ROS-low") and increased levels of glutathione (Lagadinou et al. Cell Stem Cell, 2013). Cells in this condition are highly dependent on oxidative phosphorylation for survival, in striking contrast to many tumor cells which often rely on glycolysis; indicating that LSCs are governed by distinct metabolic properties. To further elucidate key metabolic properties of LSCs, we measured differences in the global metabolome of ROS-Low LSCs in comparison to ROS-high AML blasts. Our preliminary data demonstrated that ROS-low LSCs have higher levels of amino acids and require amino acid catabolism for survival. We hypothesized that certain individual amino acids may be more important for LSC survival. If true, then targeting specific amino acids may be an avenue towards improved AML therapy. To determine if any individual amino acid is essential for LSC survival, we analyzed AML cells from five patients that were systematically cultured in media lacking one of the twenty amino acids. Cysteine depletion was consistently the most cytotoxic, showing decreased cell viability and colony forming potential of LSCs. We next determined the effect of an engineered human enzyme that selectively degrades cysteine and cystine (AEB3103, Aeglea BioTherapeutics, Inc.) on LSC viability and colony forming potential. We found that AEB3103 treatment decreased viability of LSCs in all AML specimens tested and significantly decreased colony formation (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: Effective targeting of the acute myeloid leukemia (AML) leukemia stem cell (LSC) population may allow for deep, durable remissions and curative potential. In older, newly diagnosed AML patients who are not candidates for induction, venetoclax + azacitidine (aza) targets specific metabolic vulnerabilities of LSCs, resulting in very promising clinical outcomes. In our single institution experience treating 45 previously untreated AML patients with venetoclax + aza both in the context of the multi-institutional study NCT02203773 (N=33) and with off-label use (N=12), 36/45 (80%) achieved a complete remission (CR) or CR with incomplete count recovery (CRi). In the relapsed/refractory (R/R) setting, the efficacy of venetoclax + aza has been reported to be significantly worse. In our single-institution off-label experience (N=7), only 1/7 (14%) R/R patients had a CR/CRi (p=0.005 compared to the untreated group). R/R and untreated patients had similar baseline characteristics, although more R/R patients had an antecedent hematological disorder (Table 1). Multivariate analysis showed cytogenetic risk and R/R disease as the sole predictors of response to venetoclax + aza (Table 2). In light of existing data regarding biological changes that occur in LSCs after treatment and subsequent relapse, we aimed to determine whether laboratory analysis of LSCs from patients treated with venetoclax + aza would show differential sensitivity to this therapy in the up-front vs R/R setting that could help to explain the different clinical activity. We have previously shown that LSCs from untreated patients are uniquely reliant on oxidative phosphorylation (OXPHOS), and that venetoclax + aza targets LSCs by decreasing OXPHOS. Therefore, we tested the hypothesis that inferior responses of R/R patients to venetoclax + aza are due to changes in OXPHOS regulation in relapsed LSCs. LSCs were defined as cells bearing relatively low levels of reactive oxygen species (ROS-low), an effective means of enriching primary human LSCs. We found that in contrast with untreated patients, venetoclax + aza does not decrease viability or OXPHOS in LSCs from R/R patients (Fig1). Furthermore, R/R LSCs had altered fatty acid metabolism that contributed to these OXPHOS differences, with increased flux of fatty acids into the TCA cycle (Fig 2). In addition, R/R samples compensated for the metabolic perturbations that occurred upon exposure to venetoclax + aza through upregulation of fatty acid uptake and metabolism into the TCA cycle (Fig 3). Fatty acid metabolism is controlled by multiple genes and pathways. Integral to its activity is the gene Carnitine Palmitolytransferase 1 (CPT1), due to its pivotal role in the beta-oxidation of long chain fatty acids. Investigation of the Cancer Genome Atlas AML dataset reveals higher expression of CPT1 leads to significantly worse overall survival, suggesting increased fatty acid metabolism may drive a more resistant LSC population in R/R AML patients. We also found elevated baseline levels of CPT1 in patients who progressed on venetoclax + aza compared to those that had long term remissions (not shown). Therefore we utilized the CPT1 inhibitor etomoxir to block fatty acid metabolism. We found addition of etomoxir to cultures of R/R LSCs rescued the ability of venetoclax + aza to decrease OXPHOS and re-sensitized R/R LSCs to venetoclax + aza (Fig 4). To prove that this novel regimen targets functionally-defined R/R LSCs we performed ex vivo treatment followed by xenotransplantation of R/R patient specimens, which showed that upon etomoxir addition, engraftment potential is significantly decreased over venetoclax + aza alone (not shown). Therefore we propose a novel mechanism for the increased resistance of R/R AML patients to venetoclax + aza involving altered energy metabolism. We find increased fatty acid metabolism in R/R patient specimens, and targeting this pathway using the CPT1 inhibitor etomoxir leads to sensitization to venetoclax + aza and rescued targeting of OXPHOS, allowing for LSC eradication. Disclosures Pollyea: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Argenx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Curis: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-29
    Description: Blood transfusion is a life-saving intervention for millions of recipients worldwide every year. However, refrigerated storage of red blood cells (RBCs) for up to 42 days promotes impairments in energy and redox homeostasis, which impact RBC hemolytic propensity and post-transfusion performance of the storage-damaged RBC. Since mature RBCs are devoid of de novo protein synthesis - owing to the lack of organelles and nuclei - they evolved metabolic mechanisms to cope with oxidative stress. Two of these involve (i) activation of the pentose phosphate pathway (PPP), which generates reducing equivalents (NADPH) to preserve glutathione homeostasis and recharge NADPH-dependent antioxidant enzymes; and (ii) recycling of oxidatively damaged proteins via methylation of dehydrated and deamidated aspartate and asparagine residues, a process that consumes methionine as the main methyl group donor. Thus, we hypothesize that the latter mechanism is relevant to routine blood bank storage, especially in glucose-6-phosphate dehydrogenase (G6PD)-deficient donors. In this routinely accepted donor population (~10% of donors of African descent), mutations of G6PD, the rate-limiting enzyme of the PPP, result in instability and decreased enzymatic activity (e.g.,
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Sickle-cell disase (SCD) is a life-threatening hemolytic genetic disorder. Chronic hemolysis and elevated inflammation that underlie SCD pathophysiology is difficult to treat in the clinic due to an unclear mechanism. The role of the circadian clock is required for maintaining inflammatory states which is important for proper cellular and organ function. Circadian clocks are regulated by a series of circadian clock genes which have known functions in inflammation, heme and iron metabolism. However, the function of circadian clocks in SCD remains unknown. Here, using an unbiased and robust microarray screen, we found that genes involved in circadian rhythms, inflammatory response, heme and iron metabolism were significantly altered in the lungs of SCD Berkeley transgenic mice compared to C57BL/6 (WT) mice used as controls (N=3, P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: Most AML patients who receive intensive chemotherapy achieve a significant clinical response; however, the majority will relapse and succumb to their disease, indicating that leukemia stem cells (LSCs) are not effectively targeted. Further, it has recently been shown that LSC frequency and phenotypic diversity are increased at relapse (Ho et al. Blood, 2016), thereby creating an even more challenging clinical scenario. Thus, novel therapies specifically designed to target LSCs in relapsed AML patients are urgently needed. Previously, we have shown that LSCs can be targeted by perturbing energy metabolism (Lagadinou et al. Cell Stem Cell, 2013). Therefore, the goal of the current study was to identify and target metabolic dependencies of relapsed LSCs, with the hope that this would allow improved efficacy for AML patients with relapsed disease. To achieve this objective we first measured metabolic differences in LSCs isolated from de novo and relapsed patients. This analysis revealed that relapsed LSCs have significantly increased levels of nicotinamide compared to de novo LSCs (Figure 1A). Nicotinamide is a precursor of NAD+, an essential coenzyme in energy metabolism. We hypothesized that relapsed LSCs are dependent on nicotinamide metabolism to maintain energy metabolism. To test this hypothesis, we targeted nicotinamide metabolism with the small molecule APO866, an inhibitor of Nampt, the rate-limiting enzyme for conversion of nicotinamide to NAD+. This resulted in a significant decrease in NAD+ in LSCs isolated from both de novo and relapsed AML specimens (data not shown). However, strikingly, inhibition of nicotinamide metabolism only decreased viability and colony-forming ability of LSCs isolated from relapsed AML patients, not LSCs from untreated patients (Figure 1B). To verify that inhibition of Nampt was targeting functional LSCs, we treated a relapsed AML patient specimen with APO866 for 24 hours and measured the ability of the leukemia cells to engraft into immune deficient mice. We observed a significant reduction in leukemia engraftment upon APO866 treatment (data not shown). Importantly, inhibition of nicotinamide metabolism did not affect normal hematopoietic stem cell frequency or colony forming ability (data not shown). Altogether, these data suggest that inhibition of nicotinamide metabolism specifically targets relapsed LSCs. We next sought to understand the mechanism by which inhibiting nicotinamide metabolism targets relapsed LSCs. To this end we measured changes in the major energy metabolism pathways (oxidative phosphorylation [OXPHOS] and glycolysis) in LSCs isolated de novo and relapsed AML patient specimens. Upon APO866 treatment, we observed a significant decrease in OXPHOS and OXPHOS capacity in relapsed LSCs but not de novo LSCs (Figure 1C). Furthermore, no change in glycolysis was observed (data not shown). These data demonstrate that inhibition of nicotinamide metabolism targets OXPHOS specifically in relapsed LSCs. To determine how APO866 reduced OXPHOS, we measured stable isotope metabolic flux of amino acids, the fatty acid palmitate, and glucose into the TCA cycle after APO866 treatment. We observed an increased accumulation of citrate, malate, and α-ketoglutarate from amino acids and palmitate, consistent with decreased activity of the NAD+ dependent enzymes isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase (data not shown). Through direct measurement of enzyme activity, we confirmed that isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activity were each significantly decreased upon APO866 treatment (Figure 1D). Consistent with our previous findings we did not observe any changes in glycolysis or glucose contribution to the TCA cycle (data not shown). Overall, these data suggest that inhibition of nicotinamide metabolism through Nampt inhibition results in decreased OXPHOS through decreased TCA cycle activity. In conclusion, we have shown that relapsed LSCs have distinct metabolic properties including increased levels of nicotinamide, which can be selectively targeted to eradicate relapsed LSCs. We propose that therapeutic strategies designed to target nicotinamide metabolism may be useful for relapsed AML patients and may allow for broad efficacy such as that observed when LSCs are targeted in the up-front treatment setting. Disclosures Nemkov: Omix Technologies inc: Equity Ownership. Pollyea:Curis: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Argenx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Karyopharm: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-13
    Description: The combination of venetoclax with hypomethylating agents has resulted in highly promising clinical outcomes for acute myeloid leukemia (AML) patients. However, a subset of patients are refractory or develop resistance to venetoclax based regimens, resulting in disease recurrence. The goal of this project was to determine a mechanism to re-sensitize resistant leukemia stem cells (LSCs) to venetoclax with azacitidine (ven/aza) treatment. LSCs are the population of leukemia cells that initiate disease and are not fully eradicated by conventional treatments resulting in disease recurrence. We have previously reported that ven/aza targets LSCs in de novo AML patients by perturbing amino acid uptake resulting in decreased oxidative phosphorylation (OXPHOS). To investigate how some AML patients, develop resistance to ven/aza, we first determined if ven/aza reduced amino acid uptake in primary human AML ven/aza resistant LSCs by stable isotope labeled metabolic flux and mass spectroscopy analysis. Amino acid uptake was significantly reduced in both ven/aza sensitive and resistant LSCs upon ven/aza treatment, indicating that ven/aza is still biologically active in resistant LSCs. Next, we performed gene expression analysis from LSCs isolated from AML patients who were treated with ven/aza, responded, and then either remained in remission or progressed on ven/aza therapy. Gene set enrichment analysis revealed that fatty acid transport was enriched in LSCs isolated from patients who eventually progressed on ven/aza therapy (FDR = 0.0088) (Figure A). We then determined differences in overall fatty acid levels by lipidomics mass spectroscopy analysis in ven/aza sensitive and resistant LSCs. We observed a significant increase in abundance of 20% (6/29) of fatty acids detected in resistant LSCs. To determine if targeting fatty acid transport could re-sensitize resistant LSCs to ven/aza we knocked down genes involved in fatty acid transport including CD36, CPT1A and CPT1C in 4 ven/aza resistant AML specimens and then measured viability and colony-forming potential upon ven/aza treatment (Figure B and C). Knockdown of CD36, CPT1A, or CPT1C in combination with ven/aza treatment significantly decreased both viability and colony forming ability in each of the AML specimens. In addition, knockdown of CPT1A or CPT1C in combination with ven/aza reduced OXPHOS, a known metabolic requirement of LSCs. To perturb fatty acid transport in a therapeutically relevant manner, we treated LSCs isolated from ven/aza resistant patient specimens with a CPT1 inhibitor, etomoxir, as a single agent or in combination with ven/aza, and then measured viability and OXPHOS. The combination but not single agents reduced viability and OXPHOS, consistent with our genetic studies. To determine if ven/aza with etomoxir targeted functional LSCs we treated a primary AML specimen with etomoxir, ven/aza or the combination and measured engraftment into immune deficient mice. Combination therapy significantly reduced engraftment potential compared to ven/aza or etomoxir alone indicating that the combination of ven/aza with etomoxir decreased LSC function (Figure D). To determine if ven/aza with etomoxir could target AML cells in vivo, we treated a primary patient derived xenograft model with ven/aza, etomoxir, or the combination for 2 weeks and measured leukemic burden in the bone marrow (Figure E). The combination reduced leukemic burden more significantly than ven/aza or etomoxir alone. Finally, we measured the consequences of ven/aza, etomoxir, or the combination on normal hematopoietic stem and progenitor cells. Neither single agents nor combination therapy decreased CD34+ cell viability or colony forming ability, indicating that there may be a therapeutic window to targeting these metabolic pathways in AML without harming normal stem cells. Gene expression analysis revealed that CD36, CPT1A, and CPT1C are expressed at significantly higher levels in AML compared to HSCs, which may contribute to this therapeutic window. In conclusion, these data indicate that ven/aza resistance can be overcome by targeting fatty acid transport in LSCs. Furthermore, combining ven/aza with a CPT1 inhibitor such as etomoxir may be a clinically relevant strategy to overcoming ven/aza resistance. Figure Disclosures Pollyea: Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Forty-Seven: Consultancy, Membership on an entity's Board of Directors or advisory committees; Diachii Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-29
    Description: Outcomes for AML patients remain poor because of the inability to fully eliminate leukemia stem cells (LSCs). We have previously shown that primary human LSCs reside in a unique metabolic condition characterized by a relatively low oxidative state (termed "ROS-low") and increased levels of glutathione (Lagadinou et al. Cell Stem Cell, 2013). Cells in this condition are highly dependent on oxidative phosphorylation (OXPHOS) for survival, in striking contrast to many tumor cells which often rely on glycolysis, suggesting that LSCs are governed by distinct metabolic properties. Therefore, the goal of this project was to identify and target metabolic vulnerabilities of LSCs. To achieve this objective, we used mass spectroscopy to interrogate the metabolome of leukemia stem cells (LSCs) isolated from primary human AML specimens. We observed significant increases in the levels, uptake, and metabolism of amino acids in LSCs compared to bulk AML cells. These data suggest that LSCs may preferentially rely on amino acids for survival. To investigate this hypothesis, we cultured LSCs and bulk leukemia cells isolated from primary leukemia specimens in media lacking amino acids and measured cell viability and colony forming potential. We found that LSCs were uniquely sensitive to amino acid loss. In addition, LSCs formed significantly fewer colonies upon amino acid depletion compared to LSCs cultured in media containing amino acids. To confirm that amino acid depletion was targeting functionally-defined LSCs, we employed engraftment assays in immune incompetent mice. Culturing primary AML cells without amino acids for 24 hours resulted in significantly reduced levels of leukemia cell engraftment. Next, we interrogated whether amino acid depletion impaired normal HSC survival and function by culturing mobilized peripheral blood without amino acids and measuring the frequency of CD34+ cells, colony forming ability, and engraftment into immune deficient mice. HSC frequency, colony forming ability, and engraftment potential were not changed by amino acid depletion. Altogether, these data demonstrate the LSCs are selectively dependent on amino acids for survival. We next determined how amino acids modulate LSC biology by measuring the consequences of amino acid loss on LSC metabolism. We observed that amino acid depletion decreased OXPHOS specifically in LSCs and not in bulk leukemia cells. We have previously shown that BCL-2 inhibition decreases OXPHOS in LSCs (Lagadinou et al. Cell Stem Cell, 2013). Importantly, recent studies have shown that inhibition of BCL-2 using the BCL-2 inhibitor venetoclax in combination with azacitidine has resulted in superior outcomes for AML patients (Dinardo et al. Lancet Oncology, 2018). Furthermore, our preliminary data demonstrates that venetoclax with azacitidine targets LSCs in AML patients. Therefore, we hypothesized that venetoclax with azacitidine may be targeting LSCs by modulating OXPHOS via amino acid metabolism. To test this hypothesis, we isolated LSCs from AML patients undergoing treatment with venetoclax and azacitidine. LSC specimens obtained pre and 24 hours after initiation of therapy were analyzed for changes in OXPHOS, gene expression, and the metabolome. We observed that venetoclax with azacitidine treatment decreased OXPHOS and reduced amino acid levels. In addition, expression of amino acid transporters was down-regulated. Finally, we sought to determine if culturing LSCs in high levels of amino acids before venetoclax and azacitidine treatment could rescue LSC viability and OXHPOS. We found that culturing LSCs with increased levels of amino acids rescued LSCs survival and OXPHOS, demonstrating that venetoclax with azacitidine targets LSCs by decreasing amino acid levels. Taken together, our data indicate that LSCs are selectively reliant on amino acid metabolism to fuel OXPHOS. Furthermore, amino acid metabolism can be targeted in AML patients by venetoclax with azacitidine treatment. These studies are the first to characterize metabolic targeting of LSCs in AML patients. Disclosures Nemkov: Omix Technologies inc: Equity Ownership. Pollyea:Argenx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Curis: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...