ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-03
    Description: The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ~0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-27
    Description: Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 ± 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low-thermal-maturity, Cretaceous–Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the Chukotkan orogen (lasting until ~70 Ma), followed by renewed subsidence of the Chukchi shelf in the latest Cretaceous and Cenozoic. This history maintained modest thermal maturities at the base of the Brookian sequence across the Chukchi shelf, because large sediment volumes bypassed to adjacent depocenters. Therefore, the Chukchi shelf appears to be an area with the potential for widespread preservation of petroleum systems in the oil window.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-15
    Description: Pleistocene drainage basin integration led to progressive excavation of Tertiary–Quaternary sedimentary basins along the Yellow River in the northeastern Tibetan Plateau. Cosmogenic burial dating of ancestral river deposits and basin fill from two key watershed divides confirms a fluvial connection between basins at 0.5–1.2 Ma, prior to excavation by the Yellow River. Preservation of the relict depositional surface that represents the maximum height of basin fill allows reconstruction of the volume of eroded material across a broad region. We quantify the isostatic response to this erosional unloading using a two-dimensional flexural model. Calculated maximum vertical displacements for different effective elastic thicknesses vary from ~160 m to ~260 m near the Pleistocene spillway from the Qinghai paleo-lake. We suggest that the isostatic response to fluvial excavation along the Yellow River defeated local tributaries, isolated Lake Qinghai, and led to the development of an internally drained basin in the past 0.5–1.2 m.y.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-04
    Description: The sources of the tremendous amount of Cenozoic siliciclastic sediment deposited in the Gulf of Mexico region remain debated because of a lack of definitive provenance-identifying characteristics. In an effort to build on prior provenance analysis, we present 101–160 single-grain detrital zircon U-Pb ages for each of 10 outcrop samples from Upper Paleocene to Upper Miocene sandstones from a ~10,000 km 2 swath of central Louisiana corresponding to the ancient Mississippi River Delta, the largest Cenozoic depocenter in the northern Gulf of Mexico region. Sample depositional age control is derived from biostratigraphy and/or regional lithostratigraphic correlation. U-Pb ages in each of the samples range from Cenozoic to Archean, and correspond to the ages of various geologic terranes that underlie the modern Mississippi River drainage basin. However, the prominence of various age distributions changes systematically through the Cenozoic stratigraphy, and pronounced shifts in the abundance of certain age distributions between stratal packages appear to be correlated to shifts in heavy mineral assemblages recorded across the northern Gulf of Mexico coastal plain. Comparison of coastal plain detrital zircon age distributions to age distributions from North American sedimentary cover and the ages of major North American crystalline basement rocks, aided by a sediment mixing model, illuminates the provenance of each of the stratal packages, and suggests that (1) the Mississippi River catchment has resembled its present configuration, at least in the east-west dimension, for much, if not all, of the Cenozoic, and (2) depositional episodes on the Louisiana coastal plain characterized by high sediment supply also corresponded to high proportions of sediment sourcing from the Sevier-Laramide region of the interior western United States. Sediment supply to the Louisiana coastal plain by the paleo–Mississippi River has generally been high during the Cenozoic, except for an anomalous low during the Middle Eocene, when the abundance of sediment derived from the Rocky Mountain region decreased dramatically relative to sediment derived from the Appalachian region.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-24
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-13
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...