ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    AI & society 9 (1995), S. 116-137 
    ISSN: 1435-5655
    Keywords: Adaptation ; AI ; Conversation ; Corrdination ; Imitation game ; Language ; Machine learning ; Turing test ; Simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In their enthusiasm for programming, computational linguists have tended to lose sight of what humansdo. They have conceived of conversations as independent of sound and the bodies that produce it. Thus, implicit in their simulations is the assumption that the text is the essence of talk. In fact, unlike electronic mail, conversations are acoustic events. During everyday talk, human understanding depends both on the words spoken and on fine interpersonal vocal coordination. When utterances are analysed into sequences of word-based forms, however, these prosodic aspects of language disappear. Therefore, to investigate the possibility that machines might talk, we propose acommunion game that includes this interpersonal patterning. Humans and machines would talk together and, based on recordings of them, a panel would appraise the relevant merit of each machine's simulation by how true to life it sounded. Unlike Turing's imitation game, the communion game overtly focuses attention, not on intelligence, but on language. It is designed to facilitate the development of social groups of adaptive robots that exploit complex acoustic signals in real time. We consider how the development of such machines might be approached.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-22
    Print ISSN: 0272-4960
    Electronic ISSN: 1464-3634
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-08-01
    Description: The nonlinear evolution of a pair of initially linear oblique waves in a high-Reynolds-number shear layer is studied. Attention is focused on times when disturbances of amplitude ε have O(ε1/3R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects (Goldstein & Choi 1989). Viscous effects are included by studying the distinguished scaling ε = O(R-1). When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be induced by nonlinear effects; we suggest that such explosive growth is the precursor to certain of the bursts observed in experiments on Stokes layers and other shear layers. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave/vortex approach of Hall & Smith (1991), is identified. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-01-10
    Description: Moore (1979) demonstrated that the cumulative influence of small nonlinear effects on the evolution of a slightly perturbed vortex sheet is such that a curvature singularity can develop at a large, but finite, time. By means of an analytical continuation of the problem into the complex spatial plane, we find a consistent asymptotic solution to the problem posed by Moore. Our solution includes the shape of the vortex sheet as the curvature singularity forms. Analytic results are confirmed by comparison with numerical solutions. Further, for a wide class of initial conditions (including perturbations of finite amplitude), we demonstrate that 3/2-power singularities can spontaneously form at t = 0+ in the complex plane. We show that these singularities propagate around the complex plane. If two singularities collide on the real axis, then a point of infinite curvature develops on the vortex sheet. For such an occurrence we give an asymptotic description of the vortex-sheet shape at times close to singularity formation.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-12-25
    Description: This paper studies the nonlinear development of two-dimensional Tollmien-Schlichting waves in an incompressible flat-plate boundary layer at asymptotically large values of the Reynolds number. Attention is restricted to the 'far-downstream lower-branch' regime where a multiple-scales analysis is possible. It is supposed that to leading-order the waves are inviscid and neutral, and governed by the [Davis-Acrivos-] Benjamin-Ono equation. This has a three-parameter family of periodic solutions, the large-amplitude (soliton) limit of which bears a qualitative resemblance to the 'spikes' observed in certain 'K-type' transition experiments. The variation of the parameters over slow length- and timescales is controlled by a viscous sublayer. For the case of a purely temporal evolution, it is shown that a solution for this sublayer ceases to exist when the amplitude reaches a certain finite value. For a purely spatial evolution, it appears that an initially linear disturbance does not evolve to a fully nonlinear stage of the envisaged form. The implications of these results for 'soliton' theory of spike formation are discussed.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-02-01
    Description: The instability of hypersonic boundary-layer flow over a flat plate is considered. The viscosity of the fluid is taken to be governed by Sutherland's formula, which gives a more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law. A Prandtl number of unity is assumed. Attention is focused on inviscid instability modes of viscous hypersonic boundary layers. One such mode, the ‘vorticity' mode, is thought to be the fastest growing disturbance at high Mach numbers, M 〉 1; in particular it is believed to have an asymptotically larger growth rate than any viscous instability. As a starting point we investigate the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability operates on a different lengthscale from that obtained if a Chapman viscosity law is assumed. In particular, we find that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O((logM/)1/2). Next, the development of the vorticity mode as the wavenumber decreases is described. It is shown, inter alia, that when the wavenumber is reduced to O(M-3/2) from the 0(1) initial, ‘vorticity- mode' scaling, ‘acoustic' modes emerge. Finally, the inviscid instability of the boundary layer near the leading-edge interaction zone is discussed. Particular attention is focused on the strong-interaction zone which occurs sufficiently close to the leading edge. We find that the vorticity mode in this regime is again unstable. The fastest growing mode is centred in the adjustment layer at the edge of the boundary layer where the temperature changes from its large, O(M2), value in the viscous boundary layer, to its 0(1) free-stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-09-25
    Description: The nonlinear development of a weakly modulated Tollmien-Schlichting wavetrain in a boundary layer is studied theoretically using high-Reynolds-number asymptotic methods. The 'carrier' wave is taken to be two-dimensional, and the envelope is assumed to be a slowly varying function of time and of the streamwise and spanwise variables. Attention is focused on the scalings appropriate to the so-called 'upper branch' and 'high-frequency lower branch'. The dominant nonlinear effects are found to arise in the critical layer and the surrounding 'diffusion layer': nonlinear interactions in these regions can influence the development of the wavetrain by producing a spanwise-dependent mean-flow distortion. The amplitude evolution is governed by an integro-partial-differential equation, whose nonlinear term is history-dependent and involves the highest derivative with respect to the spanwise variable. Numerical solutions show that a localized singularity can develop at a finite distance downstream. This singularity seems consistent with the experimentally observed focusing of vorticity at certain spanwise locations, although quantitative comparisons have not been attempted.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-01-01
    Description: Although unsteady, high-Reynolds-number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary-layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady three-dimensional separating flows follow and depend on the symmetry properties of the flow (e.g. line symmetry, axial symmetry) In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi two-dimensional with a displacement thickness in the form of a crescent-shaped ridge. Physically the singularities can be understood in terms of the behaviour of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer. © 1990, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1983-10-01
    Description: A liquid, contained in a quarter plane, undergoes steady motion due to thermocapillary forcing on its upper boundary, a free surface separating the liquid from a passive gas. The rigid vertical sidewall has a strip whose temperature is elevated compared with the liquid at infinity. A boundary layer analysis is performed that is valid for large Marangoni numbers M and Prandtl numbers P. It is found that the Nusselt number N for the horizontal heat transport satisfies N ~ min (M2/7M⅕P1/10). Generalizations are discussed. © 1983, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-09-01
    Description: Low-Rossby-number flow past a circular cylinder in a rapidly rotating frame is studied where N is equal to E in terms of the Ekman number E and Rossby number Ro. For this parameter range the boundary layer contains a singularity at the rear stagnation point. The asymptotic structure of this singularity is shown to consist of three distinct asymptotic regions, one of which is viscous while the others are inviscid. New accurate numerical solutions of the boundary-layer equation confirm this singularity structure. The use of Von Mises coordinates both simplifies the analysis, and enables numerical solutions to be found closer to the critical value N = 1, beneath which the flow separates upstream of the rear stagnation point. © 1988, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...