ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Garzke, Jessica; Connor, Stephanie J; Sommer, Ulrich; O'Connor, Mary I (2019): Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biology, 17(6), e2006806, https://doi.org/10.1371/journal.pbio.2006806
    Publication Date: 2023-06-20
    Description: Over broad thermal gradients, the effect of temperature on aerobic respiration and photosynthesis rates explains variation in community structure and function. Yet for local communities, temperature dependent trophic interactions may dominate effects of warming. We tested the hypothesis that food chain length modifies the temperature-dependence of ecosystem fluxes and community structure. In a multi-generation aquatic food web experiment, increasing temperature strengthened a trophic cascade, altering the effect of temperature on estimated mass-corrected ecosystem fluxes. Compared to consumer-free and 3-level food chains, grazer-algae (2-level) food chains responded most strongly to the temperature gradient. Temperature altered community structure, shifting species composition and reducing zooplankton density and body size. Still, food chain length did not alter the temperature dependence of net ecosystem fluxes. We conclude that locally, food chain length interacts with temperature to modify community structure, but only temperature, not food chain length influenced net ecosystem fluxes.
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-08-09
    Description: Habitat degradation associated with resource development is a major ecological concern, particularly in Canada’s boreal zone where limited information on biodiversity is available. Habitat degradation can lead to reductions in biodiversity and ecosystem function, especially when drivers of variability and diversity patterns have not been identified for a region of interest. In this study, the distribution of diatom genera in the Peace–Athabasca Delta in northeastern Alberta was examined in relation to seasonal, geographic, and alkalinity gradients. Grab samples of six abiotic variables (total dissolved nitrogen, total dissolved phosphorus, dissolved iron, turbidity, pH, and specific conductance (SPC)) were taken from 12 remote wetlands over three sampling periods, and regressed against an ordination of diatom community composition to identify key environmental drivers of diatom community variation. Indirect gradient analysis identified two major gradients among sites. First, separation of sites among sampling periods showed successional seasonal changes in diatom community composition. Second, separation of sites from the Peace sub-delta and Birch sub-delta showed a gradient of geographic separation. Direct gradient analysis failed to explain the underlying drivers of these two gradients, but did show that alkalinity is a key driver of diatom community composition in the Embarras sub-delta, and that these sites could be particularly vulnerable to community changes associated with acidification.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-10
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-29
    Description: Boreal peatlands provide numerous ecosystem services ranging from carbon sequestration to the provisioning of habitat for species integral to Indigenous communities. In the Oil Sands Region of Alberta, Canada, human development related to oil and gas extraction occurs in a wetland-dominated landscape. Wetland monitoring programs can determine the extent to which development impacts wetlands, but existing monitoring programs focus on characterizing biodiversity across the region and on compliance and regulatory monitoring that assumes impacts from oil sands development do not extend past lease boundaries. This is unlikely to be true since some impacts, such as particulate deposition, can extend over large areas contingent on local weather and topography. To inform the development of a new regional wetland monitoring program to assess the cumulative effects of oil sands development on wetlands, we synthesized information on the scope of wetland research across the Oil Sands Region, including the anthropogenic stressors that impact wetlands and the wetland characteristics sensitive to different disturbances. We developed a conceptual model linking human development with wetland ecology in the region to make explicit the relationships among oil sands development stressors and different components of wetland ecosystems. By highlighting testable relationships, this conceptual model can be used as a collection of hypotheses to identify knowledge gaps and to guide future research priorities. relationships among We found that the majority of studies are short-term (77% were ≤ 5 years) and are conducted over a limited spatial extent (82% were sub-regional). Studies of reclaimed wetlands were relatively common (18% of all tests); disproportionate to the occurrence of this wetland type. Results from these studies likely cannot be extrapolated to other wetlands in the region. Nevertheless, the impacts of tailings contaminants, wetland reclamation activities, and surface water chemistry are well-represented in the literature. Research on other types of land disturbance is lacking. A coordinated, regional monitoring program is needed to gain a complete understanding of the direct and indirect impacts of human development in the region and to address remaining knowledge gaps.
    Print ISSN: 0923-4861
    Electronic ISSN: 1572-9834
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Aquatic ecosystems worldwide continue to experience unprecedented warming and ecological change. Warming increases metabolic rates of animals, plants, and microbes, accelerating their use of energy and materials, their population growth, and interaction rates. At a much larger biological scale, warming accelerates ecosystem-level processes, elevating fluxes of carbon and oxygen between biota and the atmosphere. Although these general effects of temperature at finer and broader biological scales are widely observed, they can lead to contradictory predictions for how warming affects the structure and function of ecological communities at the intermediate scale of biological organization. We experimentally tested the hypothesis that the presence of predators and their associated species interactions modify the temperature dependence of net ecosystem oxygen production and respiration. We tracked a series of independent freshwater ecosystems (370 L) over 9 weeks, and we found that at higher temperatures, cascading effects of predators on zooplankton prey and algae were stronger than at lower temperatures. When grazing was weak or absent, standing phytoplankton biomass declined by 85%–95% (〈1-fold) over the temperature gradient (19–30 °C), and by 3-fold when grazers were present and lacked predators. These temperature-dependent species interactions and consequent community biomass shifts occurred without signs of species loss or community collapse, and only modestly affected the temperature dependence of net ecosystem oxygen fluxes. The exponential increases in net ecosystem oxygen production and consumption were relatively insensitive to differences in trophic interactions among ecosystems. Furthermore, monotonic declines in phytoplankton standing stock suggested no threshold effects of warming across systems. We conclude that local changes in community structure, including temperature-dependent trophic cascades, may be compatible with prevailing and predictable effects of temperature on ecosystem functions related to fundamental effects of temperature on metabolism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...