ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Aircraft with flight capability above 1.4 normally have an RPM lockup or similar feature to prevent inlet buzz that would occur at low engine airflows. This RPM lockup has the effect of holding the engine thrust level at the intermediate power (maximum non-afterburning). For aircraft such as military fighters or supersonic transports, the need exists to be able to rapidly slow from supersonic to subsonic speeds. For example, a supersonic transport that experiences a cabin decompression needs to be able to slow/descend rapidly, and this requirement may size the cabin environmental control system. For a fighter, there may be a desire to slow/descend rapidly, and while doing so to minimize fuel usage and engine exhaust temperature. Both of these needs can be aided by achieving the minimum possible overall net propulsive force. As the intermediate power thrust levels of engines increase, it becomes even more difficult to slow rapidly from supersonic speeds. Therefore, a mode of the performance seeking control (PSC) system to minimize overall propulsion system thrust has been developed and tested. The rapid deceleration mode reduces the engine airflow consistent with avoiding inlet buzz. The engine controls are trimmed to minimize the thrust produced by this reduced airflow, and moves the inlet geometry to degrade the inlet performance. As in the case of the other PSC modes, the best overall performance (in this case the least net propulsive force) requires an integrated optimization of inlet, engine, and nozzle variables. This paper presents the predicted and measured results for the supersonic minimum thrust mode, including the overall effects on aircraft deceleration.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program; p 121-128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-104240 , H-1764 , NAS 1.15:104240
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Results are presented from the evaluation of the performance seeking control (PSC) optimization algorithm developed by Smith et al. (1990) for F-15 aircraft, which optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. Comparisons are presented between the load cell measurements, PSC onboard model thrust calculations, and posttest state variable model computations. Actual performance improvements using the PSC algorithm are presented for its various modes. The results of using PSC algorithm are compared with similar test case results using the HIDEC algorithm.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 92-3747
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A study has been performed that investigates parameter measurement effects on calculated in-flight thrust for the General Electric F404-GE-400 afterburning turbofan engine which powered the X-29A forward-swept wing research aircraft. Net-thrust uncertainty and influence coefficients were calculated and are presented. Six flight conditions were analyzed at five engine power settings each. Results were obtained using the mass flow-temperature and area-pressure thrust calculation methods, both based on the commonly used gas generator technique. Thrust uncertainty was determined using a common procedure based on the use of measurement uncertainty and influence coefficients. The effects of data nonlinearity on the uncertainty calculation procedure were studied and results are presented. The advantages and disadvantages of using this particular uncertainty procedure are discussed. A brief description of the thrust-calculation technique along with the uncertainty calculation procedure is included.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 89-2364
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-1998-206554 , H-2258 , NAS 1.15:206554 , Propulsion; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-104330 , H-2179 , NAS 1.15:104330 , International Gas Turbine and Aeroengine; Jun 05, 1996 - Jun 08, 1996; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
    Keywords: Aerodynamics
    Type: E-17643 , Journal of Propulsion and Power 2011 (ISSN 0748-4658); 27; 1; 29-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.
    Keywords: Aerodynamics
    Type: AIAA Paper 2011-3796 , E-17842 , 29th AIAA Applied Aerodynamics Conference; Jun 27, 2011 - Jun 30, 2011; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A study was performed that investigates parameter measurement effects on calculated in-flight thrust for the General Electric F404-GE-400 afterburning turbofan engine which powered the X-29A forward-swept wing research aircraft. Net-thrust uncertainty and influence coefficients were calculated and are presented. Six flight conditions were analyzed at five engine power settings each. Results were obtained using the mass flow-temperature and area-pressure thrust calculation methods, both based on the commonly used gas generator technique. Thrust uncertainty was determined using a common procedure based on the use of measurement uncertainty and influence coefficients. The effects of data nonlinearity on the uncertainty calculation procedure were studied and results are presented. The advantages and disadvantages of using this particular uncertainty procedure are discussed. A brief description of the thrust-calculation technique along with the uncertainty calculation procedure is included.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-4140 , H-1556 , NAS 1.15:4140 , AIAA PAPER 89-2364 , AIAA Joint Propulsion Conference; Jul 10, 1989 - Jul 14, 1989; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...