ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cones, S., Dent, M., Walkes, S., Bocconcelli, A., DeWind, C., Arjasbi, K., Rose, K., Silva, T., & Sayigh, L. Probable signature whistle production in Atlantic white-sided (Lagenorhynchus acutus) and short-beaked common (Delphinus delphis) dolphins near Cape Cod, Massachusetts. Marine Mammal Science, 39(1), (2022): 338-344, https://doi.org/10.1111/mms.12976.
    Description: Some delphinids produce a learned, individually specific tonal whistle that conveys identity information to conspecifics (Janik & Sayigh, 2013). These whistles, termed signature whistles, were first described by Caldwell and Caldwell (1965) and have been studied intensively over the past several decades (Janik & Sayigh, 2013). In common bottlenose dolphins (Tursiops truncatus) and potentially other species, signature whistles facilitate many ecologically-important behaviors, including individual recognition and maintenance of group cohesion (Janik & Slater, 1998). Additionally, signature whistle contours, or patterns of frequency change over time, can remain stable for several decades, aiding in long-term social bonds (Sayigh et al., 1990). Signature whistles account for approximately 38%–70% of all whistle production in free-swimming animals (Buckstaff, 2004; Cook et al., 2004; Watwood et al., 2005); this percentage can be up to 100% for isolated individuals in captivity (Caldwell et al., 1990). Most of our knowledge on the function and use of signature whistles stems from Tursiops spp., and their use and presence in other delphinid taxa is less understood. Nonetheless, seven additional delphinid species have been reported to produce signature whistles: Indo-Pacific bottlenose dolphins (Tursiops aduncus; Gridley et al., 2014), common dolphins (D. delphis; Caldwell & Caldwell 1968; Fearey et al., 2019), Atlantic spotted dolphins (Stenella plagiodon; Caldwell et al., 1970), Pacific white-sided dolphins (Lagenorhynchus obliquidens; Caldwell & Caldwell, 1973), Pacific humpback dolphins (Sousa chinensis; Van Parijs & Corkeron, 2001), and Guiana dolphins (Sotalia guianensis; Duarte de Figueiredo & Simão, 2009).
    Description: Woods Hole Sea Grant, Woods Hole Oceanographic Institution, Grant/Award Number: NA14OAR4170074
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fannjiang, C., Mooney, T. A., Cones, S., Mann, D., Shorter, K. A., & Katija, K. Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens. Journal of Experimental Biology, 222, (2019): jeb.207654, doi:10.1242/jeb.207654.
    Description: Zooplankton play critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood because of the difficulty in studying individuals in situ. Here, we combine biologging with supervised machine learning (ML) to propose a pipeline for studying in situ behavior of larger zooplankton such as jellyfish. We deployed the ITAG, a biologging package with high-resolution motion sensors designed for soft-bodied invertebrates, on eight Chrysaora fuscescens in Monterey Bay, using the tether method for retrieval. By analyzing simultaneous video footage of the tagged jellyfish, we developed ML methods to: (1) identify periods of tag data corrupted by the tether method, which may have compromised prior research findings, and (2) classify jellyfish behaviors. Our tools yield characterizations of fine-scale jellyfish activity and orientation over long durations, and we conclude that it is essential to develop behavioral classifiers on in situ rather than laboratory data.
    Description: This work was supported by the David and Lucile Packard Foundation (to K.K.), the Woods Hole Oceanographic Institution (WHOI) Green Innovation Award (to T.A.M., K.K. and K.A.S.) and National Science Foundation (NSF) DBI collaborative awards (1455593 to T.A.M. and K.A.S.; 1455501 to K.K.). Deposited in PMC for immediate release.
    Keywords: Invertebrate ; Accelerometry ; Telemetry ; Zooplankton ; Jellyfish
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...