ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Sulphate-reducing bacteria ; Dissimilatory nitrate reduction ; Ammonium formation ; Nitrite reductase regulation ; Desulfovibrio ; Desulfotomaculum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rates of nitrate and nitrite reduction by cultures and washed suspensions of both natural isolates and culture collection strains of sulphate-reducing bacteria have been determined. Neither activity was detected in the Desulfotomaculum strains, but all Desulfovibrio strains reduced nitrite. Only the Desulfovibrio natural isolate FBA 20a was also able to reduce nitrate. Nitrate reduction by washed suspensions of strain FBA 20a was far more rapid than previously reported rates for sulphate-reducing bacteria [6.6 μmol NO 3 - reduced h-1 (mg dry weight)-1] and was regulated by nitrate induction and sulphate repression: it was insensitive to the product of nitrate reduction, ammonium ions. Cell yields from sulphate-limited cultures were proportional to the concentration of nitrate added with a yield coefficient of 28.0 g bacterial dry weight per mol of nitrate reduced. These results indicate that although the ability of strain FBA 20a to reduce nitrate is a physiologically significant process, it is a specialized property of only a few strains of Desulfovibrio isolates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract A serum-susceptible, guinea-pig chamber-passaged, laboratory strain (BS4 (agar)) of Neisseria gonorrhoeae was converted to serum resistance by incubation with cytidine 5-monophospho-N-acetyl neuraminic acid (CMP-NANA) and examined by electron microscopy after straining with ruthenium-red. In contrast to serum susceptible gonococci incubated without CMP-NANA, the majority (60–70%) of the serum resistant organisms showed a surface accumulation of polysaccharide. This surface polysaccharide was enhanced on all the resistant gonococci after incubation with fresh human serum. Control susceptible gonococci were devoid of the polysaccharide after incubation with heated human serum. Indentical results were obtained with a fresh gonococcal isolate which had lost serum resistance on subculture but wich, in common with 3 other isolates, was restored to serum resistance by incubation with CMP-NANA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 56 (1988), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The plasmid pAT153 was lost less rapidly from carbon, nitrogen, phosphorous or sulphur-limited continuous cultures of Escherichia coli HB101 as the dilution rate increased. At a fixed dilution rate of 0.3 h−1, the plasmid was maintained longer as the growth-limiting nutrient was changed from glucose to casamino acids (nitrogen-limited), phosphate or sulphate. These differences in the stability of maintenance were not due to parallel changes in the plasmid copy number. We propose that the rate of loss of pAT153 from E. coli HB101 is determined primarily by the ratio of growth rates of plasmid-containing bacteria and plasmid-free bacteria. This ratio increases with increasing growth rate and depends markedly on the growth-limiting nutrient, sulphate-limited growth being particularly suitable for the maintenance of this host-plasmid combination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 μM) reduced nitrate at a rate of Vmax=3.41±0.16 μmol [NO3−] min−1 mg−1 with an affinity for nitrate of Km=0.24±0.05 mM and was heat-stable up to 50°C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 μM) reduced nitrate at a much slower rate, with much lower affinity (Vmax=0.05±0.002 μmol [NO3−] min−1 mg−1 and Km=3.91±0.45 mM) and was labile during prolonged incubation at 〉20°C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Examined before subculture, gonococci in 18 urethral exudates collected from different patients were serum-resistant. For 15 exudates, the resistance was drastically reduced by treatment with neuraminidase and by one subculture on laboratory media. It was restored by incubation with cytidine 5′-monophospho-N-acetyl neuraminic acid (CMP-NANA). Electron microscopic examination of gonococci in eight exudates showed a surface structure stained by Ruthenium red which disappeared in most samples when they were treated with neuraminidase. These results were identical with those of previous studies on in vitro grown gonococci which had shown that serum resistance is due to sialylation of a 4.5-kDa conserved component of gonococcal lipopolysaccharide (LPS) by host CMP-NANA, which masks the target site for bactericidal IgM and renders surface LPS stainable by Ruthenium red. The serum resistance of gonococci in the remaining three exudates was not reduced by neuraminidase nor by subculture. The mechanism of this stable resistance is unknown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Analysis of the Neisseria gonorrhoeae DNA sequence database revealed the presence of two genes, one encoding a protein predicted to be 37.5% identical (50% similar) in amino acid sequence to the Escherichia coli FNR protein and the other encoding a protein 41% and 42% identical (54 and 51% sequence similarity) to the E. coli NarL and NarP proteins respectively. Both genes have been cloned into E. coli and insertionally inactivated in vitro. The mutated genes have been transformed into gonococci and recombined into the chromosome. The fnr mutation totally abolished and the narP mutation severely diminished the ability of gonococci to: (i) grow anaerobically; (ii) adapt to oxygen-limited growth; (iii) initiate transcription from the aniA promoter (which directs the expression of a copper-containing nitrite reductase, AniA, in response to the presence of nitrite); and (iv) reduce nitrite during growth in oxygen-limited media. The product of nitrite reduction was identified to be nitrous oxide. Immediately upstream of the narL/narP gene is an open reading frame that, if translated, would encode a homologue of the E. coli nitrate- and nitrite-sensing proteins NarX and NarQ. As transcription from the aniA promoter was not activated during oxygen-limited growth in the presence of nitrate, the gonococcal two-component regulatory system is designated NarQ–NarP rather than NarX–NarL. As far as we are aware, this is the first well-documented example of a two-component regulatory system working in partnership with a transcription activator in pathogenic neisseria. A 45 kDa c-type cytochrome that was synthesized during oxygen-limited, but not during oxygen sufficient, growth was identified as a homologue of cytochrome c peroxidases (CCP) of other bacteria. The gene for this cytochrome, designated ccp, was located, and its regulatory region was cloned into the promoter probe vector pLES94. Transcription from the ccp promoter was repressed during aerobic growth and induced during oxygen-limited growth and was totally FNR dependent, suggesting that the gonococcal FNR protein is a transcription activator of at least two genes. However, unlike AniA, synthesis of the CCP homologue was insensitive to the presence of nitrite during oxygen-limited growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression from the Escherichia coli nir promoter is co-dependent on Fnr (a transcription factor triggered by oxygen starvation) and on NarL or NarP (transcription factors triggered by nitrite and nitrate ions). Fnr binds to a single DNA site centred between basepairs 41 and 42 upstream from the nir transcript start, whereas NarL and NarP bind to a site upstream, centred between basepairs 69 and 70. A novel mechanism to account for co-dependence on Fnr and NarL/NarP is suggested from experiments in which the spacing between the DNA sites for Fnr and NarL/NarP was altered. DNA sequence elements located upstream of the NarL/NarP-binding site are the targets for two or more proteins that act to repress Fnr-dependent activation of the nir promoter. This inhibition is counteracted by NarL or NarP. The model has been corroborated by the effects of several deletions and single base substitutions in the nir promoter upstream sequences: these deletions and substitutions prevent the binding of the repressor proteins. One of these repressors has been identified as the Fis protein, that binds to a site located 135–149 bp upstream of the nir transcript start: the binding of Fis is suppressed by a single base substitution at position −146. The other repressor protein(s) have yet to be identified, but appear to bind downstream of the DNA site for Fis: binding is suppressed by a single base substitution at position −99.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression from the Escherichia coli nir promoter is co-dependent on both the FNR protein (an anaerobically triggered transcription activator) and the NarL or NarP proteins (transcription activators triggered by nitrite and nitrate). Under anaerobic conditions, FNR binds to a site centred between positions −41 and −42, activating transcription of the nir operon. In previous work, we showed that this activation is suppressed by the binding of Fis protein, and at least one other protein, to sequence elements located upstream of the nir promoter. We proposed that the binding of NarL or NarP to a site centred between positions −69 and −70 counteracts this suppression, resulting in increased transcription in response to nitrite or nitrate. Here we have further investigated the different proteins that downregulate the nir promoter. We show that the nir promoter is repressed by three DNA binding proteins, Fis, IHF and H-NS. We demonstrate that, in addition to binding to its previously characterized upstream site located at position −142, Fis also binds to a second downstream site located at position +23. A second suppressing factor is IHF, that binds to a site located at position −88. Finally, the nucleoid associated protein, H-NS, preferentially binds to upstream sequences at the nir promoter and represses promoter activity. The association of Fis, IHF and H-NS suggests that nir promoter DNA is sequestrated into a highly ordered nucleo-protein structure that represses FNR-dependent transcription activation. NarL and NarP can relieve both IHF- and Fis-mediated repression, but are unable to counteract H-NS-mediated repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression from the Escherichia coli nrf operon promoter is activated by the anaerobically triggered transcription factor, FNR, and by the nitrate/nitrite ion-controlled response regulators, NarL or NarP, but is repressed by the IHF and Fis proteins. Here, we present in vitro studies on the nrf promoter, using permanganate footprinting to measure open complex formation, and DNase I footprinting to monitor binding of the different regulators and the interactions between them. Our results show that open complex formation is completely dependent on FNR and is enhanced by NarL, but is repressed by IHF or Fis. NarL counteracts repression by IHF but is unable to alter repression by Fis. These results suggest mechanisms by which nrf promoter activity is modulated by the different factors. Expression from the nrf promoter is known to be repressed in rich media, especially in the presence of glucose, but the molecular basis of this is not understood. Here, we show that this catabolite repression is relieved by mutations that weaken the DNA site for Fis, improve the DNA site for FNR or improve the promoter −10 or −35 elements. Hence, Fis protein is a major factor responsible for catabolite repression at the nrf promoter, and Fis can override activation by FNR and NarL or NarP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK–narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...