ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 11 (1983), S. 299-327 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Oil cracking—the thermal breakdown of heavy hydrocarbons to smaller ones—takes place within oil-bearing rock formations at depths commonly accessed by commercial oil wells. The process ultimately converts oil into gas and pyrobitumen, and thus limits the occurrence of petroleum and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1983-05-01
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-05-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-10-01
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-25
    Description: Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30–40% of pore space or 20–26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally 〈2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ∼10 m thick, and may occur in up to ∼20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 315 (6016). pp. 216-218.
    Publication Date: 2016-10-26
    Description: Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, δ 13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) δ 13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter δ 13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower P CO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-30
    Description: The widespread presence of bottom-simulating reflectors (BSRs) on continental margins has bolstered suggestions that gas hydrates and free gas constitute a large dynamic reservoir of CH4 carbon and a vast potential source of energy. However, only a few hydrate-bearing areas have been drilled, and of these, the amount of CH4 has only been directly quantified in 18 discrete samples from 3 holes on Blake Ridge, east of Georgia. Here we report and discuss 30 direct measurements of CH4 concentration in sediments above and below the BSR at Hydrate Ridge on a tectonically active margin offshore Oregon. High CH4 concentrations (71–3127 mM) support abundant gas hydrate (occupying an average of ∼11% of porosity) and free gas (occupying ∼4% of porosity in 1 sample) in a restricted area where hydrocarbon gases migrate from the deep accretionary complex to the seafloor. In a larger area lacking this hydrocarbon supply, lower CH4 concentrations (10–893 mM) indicate less gas hydrate (average ∼1% of porosity) and little or no free gas. Overall, the amount of CH4 at Hydrate Ridge is significantly less than that at Blake Ridge. These results challenge certain interpretations, including the global volume of hydrate-bound CH4, which though large, may be four to seven times less than widely cited estimates. Speculations on the distribution and role of gas hydrate and free gas need revision.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-21
    Description: Integrated Ocean Drilling Program (IODP) Expedition 317 was devoted to understanding the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition recovered sediments from the Eocene to recent period, with a particular focus on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern margin of the South Island of New Zealand, takes advantage of high rates of Neogene sediment supply, which preserves a high-frequency (0.1–0.5 m.y.) record of depositional cyclicity. The Canterbury Basin provides an opportunity to study the complex interactions between processes responsible for the preserved stratigraphic record of sequences because of the proximity of an uplifting mountain chain, the Southern Alps, and strong ocean currents. Currents have locally built large, elongate sediment drifts within the prograding Neogene section. Expedition 317 did not drill into one of these elongate drifts, but currents are inferred to have strongly influenced deposition across the basin, including in locations lacking prominent mounded drifts. Upper Miocene to recent sedimentary sequences were cored in a transect of three sites on the continental shelf (landward to basinward, Sites U1353, U1354, and U1351) and one on the continental slope (Site U1352). The transect provides a stratigraphic record of depositional cycles across the shallow-water environment most directly affected by relative sea level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site and provide insights into the origins of seismically resolvable sequences. This record will be used to estimate the timing and amplitude of global sea level change and to document the sedimentary processes that operate during sequence formation. Sites U1353 and U1354 provide significant, double-cored, high-recovery sections through the Holocene and late Quaternary for high-resolution study of recent glacial cycles in a continental shelf setting. Continental slope Site U1352 represents a complete section from modern slope terrigenous sediment to hard Eocene limestone, with all the associated lithologic, biostratigraphic, physical, geochemical, and microbiological transitions. The site also provides a record of ocean circulation and fronts during the last ~35 m.y. The early Oligocene (~30 Ma) Marshall Paraconformity was the deepest drilling target of Expedition 317 and is hypothesized to represent intensified current erosion or nondeposition associated with the initiation of thermohaline circulation following the separation of Australian and Antarctica. Expedition 317 set a number of scientific ocean drilling records: (1) deepest hole drilled in a single expedition and second deepest hole in the history of scientific ocean drilling (Hole U1352C, 1927 m); (2) deepest hole and second deepest hole drilled by the R/V JOIDES Resolution on a continental shelf (Hole U1351B, 1030 m; Hole U1353B, 614 m); (3) shallowest water depth for a site drilled by the JOIDES Resolution for scientific purposes (Site U1353, 84.7 m water depth); and (4) deepest sample taken by scientific ocean drilling for microbiological studies (1925 m, Site U1352). Expedition 317 supplements previous drilling of sedimentary sequences for sequence stratigraphic and sea level objectives, particularly drilling on the New Jersey margin (Ocean Drilling Program [ODP] Legs 150, 150X, 174A, and 174AX and IODP Expedition 313) and in the Bahamas (ODP Leg 166), but includes an expanded Pliocene section. Completion of at least one transect across a geographically and tectonically distinct siliciclastic margin was the necessary next step in deciphering continental margin stratigraphy. Expedition 317 also complements ODP Leg 181, which focused on drift development in more distal parts of the Eastern New Zealand Oceanic Sedimentary System (ENZOSS).
    Description: Integrated Ocean Drilling Program Management International
    Description: Published
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: restricted
    Keywords: Paleoceanography ; sea-level ; continental margin ; Canterbury Basin ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...