ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-19
    Description: SUMMARY In this study, we investigate the rupture history of the 2009 April 6 ( M w 6.1) L’Aquila normal faulting earthquake by using a non-linear inversion of strong motion, GPS and DInSAR data. Both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located updip from the hypocentre and a second deeper and larger asperity located southeastwards along-strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture nucleation and with updip propagation at relatively high (∼4.0 km s −1 ), but still subshear, rupture velocity. The second stage starts nearly 2.0–2.5 s after nucleation and it is characterized by the along-strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the updip than in the along-strike direction. The updip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. The comparison between the source models inferred in this study with the Poisson ratio anomalies in the crustal volume containing the fault plane allows the interpretation of the delay in along-strike rupture propagation in terms of a structural control of the rupture history. Our results show that the L’Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-08
    Description: The 6 April 2009 Mw 6.3 L'Aquila destructive earthquake was successfully recorded by closely spaced 10 Hz and 1 Hz recording GPS receivers and strong motion accelerometers located above or close to the 50° dipping activated fault. We retrieved both static and dynamic displacements from very high rate GPS (VHRGPS) recordings by using Precise Point Positioning kinematic analysis. We compared the GPS positions' time series with the closest displacement time series obtained by doubly integrating strong motion data, first, to assess the GPS capability to detect the first seismic arrivals (P waves) and, second, to evaluate the accelerometers' capability to detect coseismic offsets up to ∼45 s after the earthquake occurrence. By comparing seismic and VHRGPS frequency contents, we inferred that GPS sampling rates greater than 2.5 Hz (i.e., 5 or 10 Hz) are required in the near field of moderate-magnitude events to provide “alias-free” solutions of coseismic dynamic displacements. Finally, we assessed the consistency of the dynamic VHRGPS results as a constraint on the kinematic rupture history of the main shock. These results suggested that the high-rate sampling GPS sites in the near field can be as useful as strong motion stations for earthquake source studies.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Numerical simulations of earthquake ground motions are used both to anticipate the effects of hypothetical earthquakes by forward simulation and to infer the behavior of the real earthquake source ruptures by inversion of recorded ground motions. In either application it is necessary to assume some Earth structure that is necessarily inaccurate and to use a computational method that is also inaccurate for simulating the wave field Green's functions. We refer to these two sources of error as ‘propagation inaccuracies,’ which might be considered to be epistemic. We show that the variance of the Fourier spectrum of the synthetic earthquake seismograms caused by propagation inaccuracies is related to the spatial covariance on the rupture surface of errors in the computed Green's functions, which we estimate for the case of the 2009 L'Aquila, Italy, earthquake by comparing erroneous computed Green's functions with observed L'Aquila aftershock seismograms (empirical Green's functions). We further show that the variance of the synthetic seismograms caused by rupture variability (aleatory uncertainty) is related to the spatial covariance on the rupture surface of aleatory variations in the rupture model, and we investigate the effect of correlated variations in Green's function errors and variations in rupture models. Thus, we completely characterize the variability of synthetic earthquake seismograms induced by errors in propagation and variability in rupture behavior. We calculate the spectra of the variance of the ground motions of the L'Aquila main shock caused by propagation inaccuracies for two specific broadband stations, the AQU and the FIAM stations. These variances are distressingly large, being comparable or in some cases exceeding the data amplitudes, suggesting that the best-fitting L'Aquila rupture model significantly over-fits the data and might be seriously in error. If these computed variances are typical, the accuracy of many other rupture models for past earthquakes may need to be reconsidered. The results of this work might be useful in seismic hazard estimation because the variability of the computed ground motion, caused both by propagation inaccuracies and variations in the rupture model, can be computed directly, not requiring laborious consideration of multiple Earth structures.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Numerical simulations of earthquake ground motions are used both to anticipate the effects of hypothetical earthquakes by forward simulation and to infer the behaviour of the real earthquake source ruptures by the inversion of recorded ground motions. In either application it is necessary to assume some Earth structure that is necessarily inaccurate and to use a computational method that is also inaccurate for simulating the wavefield Green's functions. We refer to these two sources of error as ‘propagation inaccuracies’, which might be considered to be epistemic. We show that the variance of the Fourier spectrum of the synthetic earthquake seismograms caused by propagation inaccuracies is related to the spatial covariance on the rupture surface of errors in the computed Green's functions, which we estimate for the case of the 2009 L'Aquila, Italy, earthquake by comparing erroneous computed Green's functions with observed L'Aquila aftershock seismograms (empirical Green's functions). We further show that the variance of the synthetic seismograms caused by the rupture variability (aleatory uncertainty) is related to the spatial covariance on the rupture surface of aleatory variations in the rupture model, and we investigate the effect of correlated variations in Green's function errors and variations in rupture models. Thus, we completely characterize the variability of synthetic earthquake seismograms induced by errors in propagation and variability in the rupture behaviour. We calculate the spectra of the variance of the ground motions of the L'Aquila main shock caused by propagation inaccuracies for two specific broad-band stations, the AQU and the FIAM stations. These variances are distressingly large, being comparable or in some cases exceeding the data amplitudes, suggesting that the best-fitting L'Aquila rupture model significantly overfits the data and might be seriously in error. If these computed variances are typical, the accuracy of many other rupture models for past earthquakes may need to be reconsidered. The results of this work might be useful in seismic hazard estimation because the variability of the computed ground motion, caused both by propagation inaccuracies and variations in the rupture model, can be computed directly, not requiring laborious consideration of multiple Earth structures.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-19
    Description: In this study we have investigated the directivity associated with the initial up-dip rupture propagation during the 2009 April 6 ( M w 6.1) L'Aquila normal-faulting earthquake. The objective is the understanding of how the peculiar initial behaviour of rupture history during the main shock has affected the near-source recorded ground motions in the L'Aquila town and surrounding areas. We have modelled the observed ground velocities at the closest near-source recording sites by computing synthetic seismograms using a discrete wavenumbers and finite difference approach in the low frequency bandwidth (0.02–0.4 Hz) to avoid site effects contaminations. We use both the rupture model retrieved by inverting ground motion waveforms and continuous high sampling-rate GPS time-series as well as uniform-slip constant-rupture speed models. Our results demonstrate that the initial up-dip rupture propagation, characterizing the first 3 s of the rupture history during the L'Aquila main shock and releasing only ~25 per cent of total seismic moment, controls the observed ground motions in the near-source. This initial stage of the rupture is characterized by the generation of ground velocity pulses, which we interpret as a forward directivity effect. Our modelling results confirm a heterogeneous distribution of rupture velocity during the initial up-dip rupture propagation, since uniform rupture speed models overestimate up-dip directivity effects in the footwall of the causative fault. The up-dip directivity observed in the near field during the 2009 L'Aquila main shock is that expected for a normal faulting earthquake, but it differs from that inferred from far-field observations that conversely provide evidence of along-strike directivity. This calls for a careful analysis as well as for the realistic inclusion of rupture directivity to predict ground motions in the near source.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-12
    Description: ShakeMap package uses empirical ground motion prediction equations (GMPEs) to estimate the ground motion where recorded data are not available. The GMPEs, however, account only for average characteristics of source and wave propagation processes and the ground motion estimate can fail in the near-source area when few stations are available. In this study, we investigate the performance of ShakeMap in the near-fault area when source effects are included at different levels of complexity. We focus on the 2008, M w 7.0, Iwate-Miyagi Nairiku (Japan) earthquake because of the large amount of recording stations which contribute to the definition of a reference shakemap. After shutting off some stations from the original data set, we evaluate the resulting shakemaps bias as if the earthquake was recorded at a smaller number of receivers. We then compute the shakemaps replacing the missing records with synthetic seismograms from a hybrid deterministic-stochastic method for extended fault. We suppose an increasing knowledge of seismic source approximation and of the slip history on the fault, obtained both from the expeditious inversion of teleseismic data and, afterwards, from strong-motion data inversion. In particular, a non-linear kinematic inversion technique allowed us to retrieve a complete kinematic description of the source process on the fault plane. Our results reveal that the integration of real data with synthetics is quite efficient, providing reliable shaking maps mainly when near source recordings are scarce. However, the accuracy of the fault plane position plays a major role in increasing the effectiveness of the results. We then apply the methodology to a poorly instrumented earthquake of similar magnitude, the 1980, M s 6.9, Irpinia (Southern Italy) earthquake. When the peak motions inferred from synthetic seismograms are included in the database, the fit with respect to the observed Mercalli–Cancani–Sieberg intensities improves.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-14
    Print ISSN: 2040-8978
    Electronic ISSN: 2040-8986
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2018-11-28
    Description: We investigate the rupture process of the 2016, M w 6.1 Amatrice earthquake, the first shock of a seismic sequence characterized by three damaging earthquakes occurred in central Italy between August and October. We jointly invert strong motion, High-Rate GPS data, GPS, and DInSAR displacements and we adopt ad hoc velocity profiles of the crust below each station. The retrieved source model reveals a high degree of complexity, characterized by a prominent bilateral rupture with low slip at the hypocenter, two well-separated slip patches and a rupture front accelerating when breaking the largest patch. The rupture of the main asperity features a slip-velocity pulse that is impeded ahead of its current direction and splits into two pulses. In this fault section we find clues of structural and rheological control of the rupture propagation due to the fault system segmentation. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...